US Army Corps

of Engineers

Construction Engineering USACERL Technical Report 97/37
Research Laboratories April 1997

The SEDAR Reuse Libraries

by
Michael C. Fu, Jonathan E. Dapin, and E. William East

8 AutoCAD - UNNAMED
File Edit Yiew Assist Draw Copstruct Modify Settings Render Model CADRE

Help

Y
2

X
v

ROOF-FODTPRINTS -1 must have a hatch to allow access.

%

Command: (critiques-callback)

ROOF-FOOTPRINTS-1 must have a hatch to allow access.2
Command:

The Support Environment for Design And Review This report describes reusable components of
(SEDAR) System is an expert critiquing system for SEDAR. The components are: the expert critiquing
flat and low-slope roof design developed at the U.S. shell, the flat and low-slope roof design domain

Army Construction Engineering Research Labora- knowledge base, a set of two-dimensional geometric
tories. SEDAR uses a task-based model of design reasoning routines, and a set of AutoCAD™ functions
for flexible control of its multi-strategy critiquing for information display. Each component’s structure
abilities. It is designed to support the existing design is described in detail, and necessary madifications for
and review protocol for roof design for. the U.S. Army effective reuse are discussed. The appendices to
Corps of Engineers. this report contain file specifications and an index of

the functions, rules, and rule sets of SEDAR.

| DTIC QUALITY IINSPECTED 3

Approved for public release; distribution is unlimited.



The contents of this report are not to be used for advertising, publication,
or promotional purposes. Citation of trade names does not constitute an
official endorsement or approval of the use of such commercial products.
The findings of this report are not to be construed as an official
Department of the Army position, unless so designated by other authorized

documents.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED

DO NOT RETURN IT TO THE ORIGINATOR




REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) | 2. REPORT DATE
April 1997

3. REPORT TYPE AND DATES COVERED
Final

4. TITLE AND SUBTITLE
The SEDAR Reuse Libraries

6. AUTHOR(S)
Michael C. Fu, Jonathan E. Dapin, and E. William East

5. FUNDING NUMBERS
4A162784
AT41
ARG

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Construction Engineering Research Laboratories (USACERL)
P.O. Box 9005
Champaign, IL 61826-9005

8. PERFORMING ORGANIZATION
REPORT NUMBER

TR 97/37

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Headquarters, U.S. Army Corps of Engineers (HQUSACE)
ATTN: CEMP-CE
20 Massachusetts Avenue NW.

Washington, DC 20314-1000

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Copies are available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

and rule sets of SEDAR.

The Support Environment for Design And Review (SEDAR) System is an expert critiquing system for flat and low-slope
roof design developed at the U.S. Army Construction Engineering Research Laboratories. SEDAR uses a task-based
model of design for flexible control of its multi-strategy critiquing abilities. It is designed to support the existing design
and review protocol for roof design for the U.S. Army Corps of Engineers.

This report describes reusable components of SEDAR. The components are: the expert critiquing shell, the flat and low-
slope roof design domain knowledge base, a set of two-dimensional geometric reasoning routines, and a set of AutoCAD™
functions for information display. Each component’s structure is described in detail, and necessary modifications for
effective reuse are discussed. The appendices to this report contain file specifications and an index of the functions, rules,

14. SUBJECT TERMS 15. NUMBER OF PAGES
Support Environment for Design And Review (SEDAR) roofs 128
design criteria knowledge based systems 16. PRICE CODE
expert systems computer aided design
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFIGATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified SAR

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std 239-18
298-102




2 USACERL TR 97/37

Foreword

This study was conducted for the Directorate of Military Programs, Headquarters,
U.S. Army Corps of Engineers (HQUSACE) under Project 4A162784AT41, “Military
Facilities Engineering Technology”; Work Unit AR6, “Domain Knowledge Structure
and Process.” The technical monitors were Robert Chesi, CEMP-CE and Stan

Green, CEMP-CE.

The work was performed by the Engineering Processes Division (PL-E) of the
Planning and Management Laboratory (PL), U.S. Army Construction Engineering
Research Laboratories (USACERL). Dr. Michael P. Case is Chief, CECER-PL-E,
and L. Michael Golish is Operations Chief, CECER-PL. The USACERL technical
editor was Linda L. Wheatley, Technical Information Team.

The Roof Consultants Institute (RCI) provided computer-aided design (CAD) roof
symbols for the project. IBM-PC, Microsoft Windows, Goldworks III, and AutoCAD
are registered trademarks of International Business Machines, Microsoft, Gold Hill
Computers, and Autodesk, respectively.

COL James T. Scott is Commander and Dr. Michael J. O’Connor is Director of
USACERL.




USACERL TR 97/37

Contents
OF 208 . ..ot e 1
FOreWOId . .. o e 2
LISt Of FIQUIeS ... ... .. i e e i 5
1 Introduction . ... ... ... . e 7
BacKgroUNd . ... e 7
(@)1= 1177= I 7
APDIOACh .o 7
7ot )« = 2 8
Mode of Technology Transfer ........ ... e 8
Report Organization . . . ... ...ttt 8
2 SEDAR OVeIVIEW . . ..ot e e e e 10
Critiquing and Suggestionin SEDAR . ... ... .. 10
System ArchiteCture . . . ... ..o e 13
The Designer's Task Modeland ltsUse ... ... ... it 13
Evaluation and DiscuSSION . . .. .o ottt e e 18
3 The Expert Critiquing Shell .. ........ ... ... . . i 19
Shell OVEIVIBW . . . o e 19
System Operation and Information Flow Across Components .................. 29
SYSIEM REUSE . .o\ttt 37
CONCIUSION . . .ottt e e 44
4 The Flat and Low-Slope Roof Knowledge Base ........................... 45
SEDARKnowledge Base ............ ... ... 45
Knowledge Base ReUSEe ....... ... i 45
5 Geometric Reasoning Libraries ............... ... ... .. ... ... i 48
DeSCHPHON . . o\t 48
Data SIUCIUIES . . oottt e e 48
Major Functions and Their Return Values . ............ ... ... oot 50
6 AutoCAD Information Display Functions . ................. ... .. ......... 52
Text Display BOXES ... .ovi e 52

The Design Objects Dialog Box .. . ... 54



USACERL TR 97/37

Loy (= =) 1 - < J R OO 55
Appendix A: Filesand Locations . ...t 58
Appendix B: Function Listingsby File .. ...... ... .o i, 61
Appendix C: Rules and Rule Set Listingsby File ........ ... .. . .. .. L. 92
Appendix D: Alphabetical Listing of Goldworks Ill Lisp Functions .. .............. 109
Appendix E: Alphabetical Listing of Autolisp Functions ....................... 118
Distribution




USACERL TR 97/37

List of Figures

Figures

10

11

12
13
14
15
16

17

Example of an Error Prevention Critique .......... ... ... .. ......
Example of an Error Detection Critique . ............. ... ... ... ...,
Example of a Design Suggestion . ........... ... ... .. ool
SEDAR architecture . ... ...t

A portion of the Designer’'s Task Model for flat and low-slope roof
design showing interferes-with links to the Air-Handler-Layouttask . . ...

Detailed view of Blackboard component .................. .. ... ...

A portion of the Designer’s Task Model for flat and low-slope roof
design with task-subtask links shown as heavy blacklines ............

The Requirements Hierarchy . ....... ... . ... . .. ...
The Materials Hierarchy . ......... ... i
The Design Object Hierarchy ....... ... ... . i

Relationship between critiquing/suggestion agents and the knowl-
BdgE DASE . .. . e

The SEDAR userinterface . ......... ... . i
The iterafive critiqguingeycle ... e
The trigger and condition portions of adesigncode .................
TheRule Frame ... ... e
Example of atextdisplaybox .. ........... . i

SEDAR architecture . ..........c i e



USACERL TR 97/37

1 Introduction

Background

The Support Environment for Design And Review (SEDAR) System is an expert
critiquing system intended to support designers and reviewers in the domain of flat
and low-slope roof design. Based on the IBM-PC hardware platform and the
Microsoft Windows operating system, it uses a commercial, LISP-based expert
system shell (Goldworks IIT) and a commercial computer-assisted design (CAD)
program (AutoCAD). By providing an interactive, graphical interface for roof
designers and reviewers, SEDAR is intended to increase the efficiency of the design
review process.

Objective

The objective of this study was to identify and describe reusable components of the
SEDAR project. This effort will help future developers interested in creating expert
critiquing systems for other problem domains or in creating systems using the com-
mercial applications mentioned above.

Approach

The SEDAR project has been supported by the U.S. Army Construction Engineering
Research Laboratories (USACERL) since 1994. The initial architecture for the sys-
tem was created after a thorough review of state-of-the-art construction manage-
ment systems and existing documents from the U.S. Army Corps of Engineers.
Preliminary testing of the SEDAR project for flat and low-slope roof design was
conducted from May through June 1995. The testing led to revisions in the system
involving the user interface. Finally, the existing SEDAR code was documented and
reorganized in preparation for this report.

DTIC QUALITY INSPEITED 8



8 USACERL TR 97/37

Scope

The SEDAR project acts as an agent in the ACE collaborative engineering project
developed at USACERL and may also act as a standalone expert critiquing system.
Currently SEDAR is in a second development cycle to incorporate enhancements
from the testing phase and additional planned extensions.

Mode of Technology Transfer

The code developed under the SEDAR project is documented in this report. A
diskette containing the reuse library files described in this report will be available
upon request. The algorithms developed under this project will also be applied to
the development of modules under the Modular Design System project.

Report Organization

The first chapter of this report is a brief overview of the capabilities of SEDAR.
Each of the remaining chapters describes how various components of SEDAR may
be reused for future research projects. In order of largest component to smallest

component they are:

1.  The expert critiquing shell may be adapted for use in other domains besides flat
and low-slope roof design. The extent of shell reuse for a domain depends on several
attributes of the domain. For example, shell reuse for other architectural domains
maximizes the shell reuse due to their similarities to the roof domain. Other
domains may require more developer adaptation. This part of the shell is written
in Goldworks III.

2. The flat and low-slope roof knowledge base is a partial implementation of the
constructibility review criteria established in East et al. (1995). Besides its use in
SEDAR, this knowledge base may also be used for other applications for the flat and
low-slope roof domain. The knowledge base is written in Goldworks III rule syntax.

3. A set of two-dimensional (2-D) geometric reasoning functions were implemented
for the expert critiquing shell, and may be used in other architectural or spatial
reasoning applications.




USACERL TR 97/37

4. A set of Autolisp functions for information display were also developed for the
user interface of SEDAR, which was an augmented version of AutoCAD. Several of
these functions may be of general interest and are reported here.

The appendices to this report contain indices of functions, rules, and rule sets for the
reusable code, and information about the organization of the code.



10 USACERL TR 97/37

2 SEDAR Overview

The SEDAR System helps roof designers by providing critiques and simple sugges-
tions as the roof design progresses. By providing feedback as design decisions are
made, errors may be prevented or detected early in the design process, thereby
reducing or eliminating the need for extensive redesign due to these errors. SEDAR
assists reviewers in checking the correctness of a design by using review knowledge
stored in its knowledge base. Because the process of design review is inherently a
time-consuming and resource-constrained process, SEDAR will help reviewers by
providing consistent and comprehensive automated reviews of the roof design. Use
of SEDAR in the existing roof design and review process will help to reduce pre-
mature roof failures caused by poor quality roof designs. Roof failures resulting
from errors and misjudgments in design constitute a serious legal threat to
architects, contractors, and manufacturers alike (Griffin 1982), and result in high
repair and maintenance costs to building owners.

SEDAR focuses the content of its critiques and suggestions through the use of a
hierarchical decomposition of the roof design task called the Designer’s Task Model
(DTM). The DTM was created from observations of how experienced roof designers
divide the roof design task into interdependent subtasks associated with the layout
of functional subsystems, such as the drainage or walkway systems. The DTM is
used to track the progress of roof designers flexibly and provides a basis for pro-
viding relevant critiques and suggestions at appropriate times in the design process.

A prototype version of SEDAR has been implemented for personal computers
running Microsoft Windows using Goldworks III, a LISP-based expert system shell,
and AutoCAD, a CAD tool. The results of an evaluation of the system were that
users had favorable reviews of the system, that SEDAR helped to reduce the number
of design errors, and that the functional decomposition of the DTM matched the
users’ conception of the roof design task.

Critiquing and Suggestion in SEDAR

Three critiquing strategies and one design suggestion strategy are currently
implemented in SEDAR. These strategies (error prevention, error detection, design




USACERL TR 97/37

11

review, and simple design suggestion) differ in their intent, timing, and intrusive-
ness. The error prevention, error detection, and design suggestion strategies provide
advice as the roof designer creates the roof layout. The design review critiquing
strategy is intended for use by reviewers and checks user-specified roof subsystems
for review criteria violations. Each of these strategies may be turned on or off by the
system user at any time; this level of flexibility is provided because individual users
have different backgrounds, support needs, and preferences. The critiquing and
design suggestion strategies use a common knowledge base containing flat and low-
slope roof constructibility review criteria taken from East et al. (1995). Currently
the knowledge base consists solely of condition-action rules; this knowledge repre-
sentation was chosen because of its similarity to the knowledge expressed in East
et al. (1995). Each of the strategies uses the DTM to focus the content of its advice.

The Error Prevention Strategy

The intent of the error prevention critiquing strategy is to prevent errors before they
occur. The critiquing strategy shows “off-limits” areas on the existing layout when
a user selects a design object (i.e., roof drain, air-handling unit, walkway, etc.) from
the system’s object palette. For example, the error prevention strategy in Figure 1
shows the designer where not to place the selected masonry chimney design object
in the roof field. Cross-hatched areas that show minimum spatial separation
between the existing objects on the design and masonry chimneys are shown.

The Error Detection Strategy

The intent of the error detection critiquing strategy is to detect errors as they occur.
After the designer places an object in the roof field, the new object is checked for
constraint violations using a set of relevant review criteria. The user may then
examine any of the graphical-textual constraint violations. Figure 2 shows a con-
straint violation from placing the masonry chimney object too close to an existing
chimney; the minimum distances between the objects are shown as cross-hatched
areas, the area of the constraint violation is delineated by a dashed rectangle, and
the textual portion of the critique is shown below the drawing area.

The Design Review Strategy

The design review strategy is intended to assist reviewers in the process of checking
roof designs according to established review criteria, but during the evaluation of
the SEDAR prototype many designers used the design review critiquing strategy to
check portions of their roof layouts. After the user selects a roof subsystem to review
from a graphical/textual dialog box, the system checks the existing design for all




12 USACERL TR 97/37

= Auto CAD AMED via
File Edit View Assist Draw Construct Modify Settings Render Maodel SEDAR
Help ,

Wl [Lover[amTEnTio  [eflo] STP] BRI [141.4377.13.0856 L

N

I

m

D
o

Command: (new-object-callback) _'DDLMODES Regen queued.
Resuming INSERT command.
Insertion point:

Figure 1. Example of an Error Prevention Critique.

AutoCAD - UNNAMED

Render Model SEDAR

F just P
end to exoarm

._'DDLMODES
. _'DDLMODES

Figure 2. Example of an Error Detection Critique.

L




USACERL TR 97/37

constraint violations using rules relevant to the selected subsystem. As in the error
detection strategy, the user may examine the resulting graphical-textual critiques.
The primary differences between the design review strategy and the error detection
strategy are that (1) the design review strategy is user-activated and (2) the design
review strategy checks a roof subsystem completely, while the error detection
strategy checks for the legality of a single design object.

Simple Design Suggestions

Simple design suggestions are made by the system to guide a user toward a legal
configuration of a roof subsystem. For example, the system will suggest the place-
ment of an access hatch on the roof layout if no other means of accessing the roof has
already been specified. Figure 3 shows the hatch design suggestion; a hatch is
displayed in the upper lefthand corner of the drawing, an arrow is shown connecting
the hatch to the roof, and a textual explanation is shown. In addition to these types
of suggestions, SEDAR also provides a limited form of design completion. For
example, when a saddle-type drainage area is placed in the roof field a roof drain is
automatically placed at the low point of the saddle.

System Architecture

The architecture of SEDAR is shown in Figure 4. The User Interface is the com-
munication medium between the designer and SEDAR and is an augmented version
of AutoCAD. The user may add, delete, or move design objects (i.e., roof drains, air-
handling units, walkways, etc.), examine the state of the DTM, view the existing
critiques on the design, and turn any of the critiquing strategies on or off. User
actions are communicated to the Critic Management Agent (CMA), which selects a
critiquing strategy to apply and updates the shared data structures on the Black-
board (specifically, the DTM and the design representation) to reflect the modifica-
tion. It then activates the appropriate Support Strategies (here the Critiquing and
Suggestion Agents), which perform the design analysis according to the selected
critiquing strategy, and translates their results into graphical/textual critiques. The
critiques are then sent back to the User Interface for display.

The Designer’s Task Model and Its Use
A primary contribution of this work to the field of expert critiquing systems is its use

of the DTM to focus the content of its advice to issues relevant to the system user.
Structurally, the DTM is a subtask hierarchy of the roof design task, consisting of



14

USACERL TR 97/37

File
Help__

AutoCAD - UNNAMED
Edit ¥iew Assist Draw Construct Modify Settings

Render

Model SEDAR

1.]140.8858,10.6063

l|&l:

i

i i
ROOF~FOOTFEINTS~ 1 must jhave '? hatch to

allow aceess

|
|

. _'DDLMODES
:_'DDLMODES

Figure 3. Example of a Design Suggestion.

Notification of
User Actions

Critic
Management

User

Interface

Textual/Graphi
Critigues

——p Data Exchange
Influence

Data Structures

=
O

Code

Update

Designer's

Task Model

Info

Design

Representation)

Blackboard

Task-Focusing

Support Strategies
(Critiquing and |
Suggestion Agents)

Violation Records

Figure 4. SEDAR architecture.




USACERL TR 97/37

15

design tasks that a user may encounter during a roof design. The DTM influences
system behavior in three ways: (1) it is used to track the user’s progress throughout
the design task, (2) the state of the DTM resulting from the tracking process
determines the set of review knowledge applied to the existing roof design for each
critiquing episode, and (3) the state of the DTM is used to organize the display of
advice to the system user.

Structure of the DTM

Figure 5 shows a portion of the DTM; the task at the left, Roof-Layout, is the most
abstract task. The leaf nodes of the hierarchy (i.e., Drain-Layout, Walkway-Layout,
etc.) represent the design of specific functional subsystems. Part-of links, shown as
solid lines in Figure 5, describe the task-subtask relationships. Interferes-with links
represent possible interferences among tasks. Only the interferes-with links related
to the Air-Handler-Layout task are shown in Figure 5. For example, the Air-
Handler-Layout and Walkway-Layout tasks are related by an interferes-with link
because walkways should not overlap air-conditioning units. Each subtask in the
DTM is associated with a set of review criteria (in the form of condition-action rules)
in the critiquing and suggestion agents specifying acceptable layout conditions.

Use of the DTM

As a designer works on the roof design, the DTM is used to track the designer’s focus
of attention. Each task in the DTM is either an inactive, active, or focus task. The
set of all task states in the DTM forms an activation pattern. Focus tasks represent
SEDAR’s interpretation of the user’s current focus. Each task is associated with a
set of design objects; when a new object is added to the design, all tasks associated
with the object and all of the tasks’ ancestors in the part-of hierarchy are focus
tasks. In Figure 5, the user’s selection of a masonry chimney object causes the
Chimney-Layout task and its ancestor, the Equipment-Layout task, to become focus
tasks. Active tasks are related to the focus tasks by an interferes-with relation, are
subtasks of a task with an interferes-with relation to a focus task, or were focus
tasks previously. They represent tasks that not only have been addressed by the
user in the past, but also those that should be considered by the user. Finally,
inactive tasks are those that have not been addressed yet by the user.

During a critiquing episode, SEDAR uses only those review criteria that are linked
with focus and active tasks so that the resulting critiques and suggestions are
relevant to the user’s focus of attention. In Figure 1, for example, all of the “off-
limits” areas were generated from rules relevant to masonry chimneys; had the user



"isel inoAe7-40|pueH-41y 943 0} S$HUI| Yyum-salapiaiu) Buimoys ubisep joos adojs-mo| pue jejy 10§ [SPO skl S oubisag ayi Jo uoiuod v -G ainbig

USACERL TR 97/37

16

InoAe1-|lep

noAet-19ping-ealy

- Buiuoniued-jooy 1noAe-uidjoo =
Sel |Aloe jnoAet-julor-uoisuedxy -
Sk} SNO0J 1noAe
Jnoke-keuwyn H noAe-juswidinbg hoom._
q
uolnelal DU . noAe;elpueH-1iy -
Ylim-salajalul
uone|el -hO-tma InoAe7-Aemiiep =
—

INOAET-408Q =

InoAe-waisAg-abeurelq; INOABT-UONEINSU| {=

—= IN0ABT-JUBUOAWOD-JO0Y e

noAe-1epiejay-iodep

InoAe-jjeys-uone|jus | « noAe-uonienauad noAej-sueiquaiy (=

uBisag-waisAg-buiyse|d




USACERL TR 97/37

selected an air-handling unit instead of a chimney a different set of areas would
have been shown.

Evaluation and Discussion

A prototype of SEDAR was evaluated in two experiments. The first experiment was
a system usability evaluation, which rated the performance of SEDAR along various
usability issues. While the full results of this experiment are reported elsewhere
(Fu 1994), one outcome of this experiment was an informal verification of the
appropriateness of the functional decomposition of roof subsystems of the DTM. The
second experiment measured the prototype system’s error reduction effectiveness,
and showed that designers can use SEDAR to reduce the number of errors in their
roof layouts.

The two classes of errors that the system was not able to prevent were optimality
issues regarding object placement. The placement of the design object was legal
according the review criteria, but the object was placed in a “suboptimal” location.
Although the SEDAR prototype does not deal with the optimality of subsystem
design, recognizing and advising in these situations was expressed as a need by the
system evaluators for future development. Additionally ways are being sought to
critique and support designers throughout the design process, from early conceptual
design to later detailed design (e.g., Brown and Chandrasekaran 1986).



18 USACERL TR 97/37

3 The Expert Critiquing Shell

One goal of the work on SEDAR was to develop an expert critiquing shell that can
be adapted for different problem domains. The system is divided into two parts: a
“domain-independent” critiquing shell and a knowledge base containing information
specific to the flat and low-slope roof layout domain. The first section of this chapter
divides the architecture shown in Figure 4 into the shell and knowledge base com-
ponents. The second section of this chapter describes the data structures and
information flow within the expert critiquing shell. The final section of this chapter
discusses modification or replacement of the domain-specific knowledge base to
allow critiquing in different domains.

No shell is truly completely domain independent, so SEDAR is best used for domains
with certain intrinsic qualities. While these domain qualities are not essential,
reuse of the shell is maximized in domains that meet many of these qualities. First
and foremost, SEDAR is intended for use in domains involving “routine design.”
Routine design is where the tasks and processes for solving a design task are clearly
defined. The DTM of SEDAR is a representation of these tasks and processes, and
a consistent model should be elicited from expert designers. Second, SEDAR is best
suited for domains in which the solution is constructed from a set of atomic objects.
SEDAR’s Design Object Hierarchy is a record of the types of these atomic objects.
Third, SEDAR contains a library of geometric reasoning functions for use with 2-D
spatial layout domains. Chapter 4 discusses this library in greater detail. Re-
searchers who wish to use SEDAR for domains involving 2-D spatial reasoning may
use the library as a foundation for their own geometric reasoning routines.

Shell Overview

The architecture shown in Figure 4 provides a component breakdown at a high level
of abstraction. The critiquing shell components described in this section have been
zipped using Pkzip v.2.04 into the file sedar-sh.zip. Of the four major components—
the User Interface, the Critic Management Agent, the Blackboard, and the Cri-
tiquing Agents—two (the Blackboard and the Critiquing Agents) contain both shell
and domain-specific components. The other two components (the User Interface and
the CMA) may be reused in their entireties. Two commercial software applications




USACERL TR 97/37

19

serve as the base for the four system components: AutoCAD (for the User Interface)
and Goldworks III (for the Blackboard, Critiquing Agents, and the Critic Manage-
ment Agent). The two applications communicate through a DDE interface written
by the Concurrent Engineering Team at USACERL.

The Blackboard

The Blackboard contains five subcomponents that are domain-specific. Figure 6
shows a more detailed view of the blackboard and its constituent components. The
Blackboard consists of five subcomponents: the DTM, a Requirements Hierarchy,
a Materials Hierarchy, a Design Object Hierarchy, and the Design Representation.
Each of these subcomponents may be modified to suit other problem domains; only
the DTM, the Design Object Hierarchy, and the Design Representation are essential
to the operation of the expert critiquing shell.

The Designer’s Task Model. The DTM is a hierarchical model of the tasks involved
in the problem domain. A DTM for the flat and low-slope roof design domain is
shown in Figure 7. As discussed in Chapter 1, the tasks are ordered according to
three types of semantic links. Task-subtask links describe the generality ordering
between tasks and are shown as heavy black lines in Figure 7. Interferes-with links
describe potential interferences between different tasks at the same level of

The Design Object

The Designer's Task Hierarchy
Model

The Regquirements

Hierarchy
The Design
Representation The Materials
Hierarchy
Blackboard

Figure 6. Detailed view of Blackboard component.



USACERL TR 97/37

20

'saul| Jorjq AAeay se umoys syui| yseiqns-yse} yim ubisap Joos adojs-moj pue jejy 10} [apojy ysel s seubiseq 8y} jo uoiuod y *Z ainbiy

1nohe-jlem

NoAeT-19pIAI(g-BaIY

)Se] BAljoe

L

inoAe-julop-uoisuedxgy

)SE} SNo0j

uonejel
Ylm-salapelul

L S——

uolelal -jo-ped
.

v

InoAe-ealy-abeurelq

| InoAe-ueiq

InoAe-1addnog

InoAeT-yeys-uonejuap |

Buiuomped-jooy

So>m._-cowm_.._

noAe-Aemyep

INoAe-¥oaq =

INoAe--uolensu| =

inoAe-lepiejey-todep

InoAe-uonelsuad

ubisag-wajsAg-buiyse|y

L

INoAET-auBIqUIBN

L

IN0ABT-ULId}O0 femmem

noAeT-juswdinbg

NOAET

jooy

noAet-usuodwio)-j00y t=—




USACERL TR 97/37

21

abstraction. Finally, before-task links encode orderings of task execution observed
in human expert designers. Only the task-subtask and interferes-with links are
used in the current version of SEDAR. The DTM is defined in two files: frames.lsp,
which contains the task definitions and task-subtask semantic link definitions, and
assert.lsp, which contains the definitions for the interferes-with and before-task
links.

The Requirements Hierarchy. The Requirements Hierarchy is a set of goals or, in
the case of design domains, a set of functional requirements that the solution must
satisfy. Each goal or functional requirement is linked to a set of rules in the agent
knowledge base describing conditions that satisfy (or violate) the requirement.
Figure 8 depicts a portion of the Requirements Hierarchy for flat and low-slope roof
design. The Requirements Hierarchy is defined in the file frames.lsp.

The Materials Hierarchy. Considering the interactions between materials on a roof
is also important for quality roof design. For this reason, the Materials Hierarchy
contains the various materials used in roofing systems (Figure 9). Individual roof
components inherit not only from their parent object types but also from a material;
for example, a roof deck may be made of steel, wood, or a type of concrete. Strictly
speaking, however, the Materials Hierarchy is not necessary to the operation of the
expert critiquing shell. Its use is an artifact of the rules in the flat and low-slope
knowledge base rather than of the shell. Like the other hierarchies, the Materials
Hierarchy is defined in frames.lsp.

The Design Object Hierarchy. The Design Object Hierarchy (Figure 10) is a hierar-
chical ordering of the different types of objects used to compose the solution in
SEDAR. For the flat and low-slope roof design domain, this hierarchy consists of
generalized design objects like roof-drains, air-handling units, saddles, and crickets.
The design object frames are organized in a part-of hierarchy. The root of the tree
is the abstract physical-system-components object. All the nonleaf nodes of the
hierarchy are used as shell classes and thus are noninstantiable. The leaves of the
hierarchy are the instantiable design objects (e.g., roof-drains, ac-units-curbed, and
attic-vents). Each design object inherits from its parent in the design object hier-
archy, from a set of material frames, and from a shape frame that defines the
intrinsic shape of the design object. The shapes of objects are defined in greater
detail in the third section of this chapter. The design object frames have slots that
describe and structure the attributes associated with the type of design object
represented by the frame. When the user selects and places a design object on the
drawing, an instance of the generalized design object is made and its slot values
filled. Like the other hierarchies, the design object hierarchy is defined in
frames.lsp.



USACERL TR 97/37

22

‘AyoseialH suawadinbay ayj g ainbi4

UO[}E||EISU| -5} W3 o fem

| souepsisay-uoissiwsuel | -lewnay ] o

_E__E_ymanu.Ewcanou.Som T

| AquBaqu)-Ayase g a1 fu

_ AvupsIsay-uoje1Bip-ainisiow

_ wocmﬁ_mwm.wmmEmo-E:ﬁ_oE“ t A ajuj-ssaupybipaiem TI_. sapog-ufiisag

_ UOISSIWSUEB) | -ua1na||0]-40-uny

[fa1119E15 1B UOISUB WG feeem

_ mocmﬁ_mwm.m:_;mau.ﬁmaE__T

_ U WAA0 - WBISAG-J00Y T

_ wo:mﬁ_mwm.wmmEmo._w..:mw:pT

I
_E_awt.__-_m:..ﬁ ni}s .T

[ A41N0a54uaU0dW0] 400} Jrm— 50UESISEY-2010 §-BURI| ) f—

poddng-peoT __I




23

USACERL TR 97/37

*Aydoield

IH Sletiole 8y "6 aanbid

HUE|d-PoO

poomi|d

_ a12I10U07)-paslolulay T

| nueig-sppaouny-passansald fe

W 4-[Aun

[ 12de g-peny-pajeuiwey _m__ﬁmz.hwEﬂwm.Eam._:Ll

snoulwnyg

_ pIEOQG-WED J-3uryjaintjod T

_ Emom-Emo.._.EmScm;bom_h_o&I

pilrOg-ajIag
{IE1131E |4{-UDE [NSU
?aom.an:am_o__l {IEUBIE Y -UolE) |

_ pieog-apsoduwos T

[ pieog-sseg-EIn)I2] T

[peort—y
—
[enseia = ezt Suniseld =

|EURIE W -[BINJONI}S T

_ _w:mn_-w#w_o:ou.ﬁmomhn_\__l

_ ajalouoq-wnsdia-painod T

| =3210u09-BunE|nsU|n L] 1=

_ 12q14-poojuswa’ T

and

213I0U0 ). |EuRlE P -Bumpeg T

uawnyg-paiipo

[Rasz

_ :wtﬁ_h_%m_@-uﬂmcmwae_.:mﬁmqj

Ald-2|Buig

_ U@ 40lurbiQ-pajeINiES-IE | -|FO)

| #=401uebin-pateinie s Eydsy

dn4ing

ll_m__ﬂmﬁ.m_._mﬁEwS_ .TI




USACERL TR 97/37

24

*Ayaueialy 103lqO ubisag ayl "ol 2unbig

| stsuwiys-fiuosejy je

| s2didqua 100y fmm

"mhw:EEn_T
SHEIS10H

[ sdaajssiunoy fem

“ Sun-0y T

| paqingspunoy __L

| suejisneyxy fe

| spooH-awny je
sheni|EAn,

Sayo}PH

SI3pIAIQ-B ANy
suor-dxg

e

[ stundioo 4400y

SI9UDISE 4

Suauodwon
-afpg-uoneuWIa ]|

_ seang-aBeuieiq-adojg-aug

_ sealy-aBeuiriq-ado|g-om|

Fmmwbd.mmm:_m_o.wno_m.h:o.._

[ suiE1g-mojpaag f—

| mrm;m.«cw>Iﬂ.....m.._o_"_Eon_-co:m__t._w}T

SE3Iy-2BEUIRI] =

| =p=q-3q14-poomuawan}

uod -aeuips

UoRE|RSY|

“ wawdinbg T

suauodwon

= -wasig
-|BOISAY 4

sjuauodwor
-WalsAS o0y

: odwoq-u|
[ sispiejay-10dey jumm [ Susu UG =

{ Spag e

susuodwon
-WalsAg - BINA NS




USACERL TR 97/37

25

The Design Representation. The Design Representation consists of object instances
and semantic links between the objects. The object instances are created by the
human user in the User Interface, and the semantic links are created by a set of
Goldworks III rules and LISP functions attached to the generalized object definition
in the Design Object Hierarchy. The rules and functions (written in Goldworks III)
are automatically fired when an instance of the object is created and are defined in
the files obj-rule.lsp and obj-fn.lsp.

Summary. The reuse of the blackboard is in terms of the conceptual structures
required by the expert critiquing system rather than the actual content of those
structures, which currently contain information for the flat and low-slope roof design
domain. Of these five structures, the DTM, the Design Object Hierarchy, and the
Design Representation are the most essential. The DTM is a representation of the
problem-solving process of human experts and is used extensively by the Critic
Management Agent and the Critiquing Agents. A cognitive task analysis and elici-
tation of problem-solving structure for human experts in the domain is required for
proper definition of the DTM. The Design Object Hierarchy defines the set of objects
which, when combined, constitutes a solution for a problem in the domain. The
Design Representation encapsulates the critiquing system’s representation of the
solution being created by the human user. All inferencing and subsequent analysis
by the Critiquing Agents is performed on the design representation. The require-
ments for redefinition of these three subcomponents is discussed in greater detail
in the third section of this chapter.

The Critiquing Agents

SEDAR supports three distinct critiquing agents and one design suggestion agent.
The critiquing agents are: the error prevention critic, the error detection critic, and
the design review critic. The suggestion agent is called the simple design suggestion
agent. Each of these agents use rules defined in a central knowledge base—the flat
and low-slope roof design knowledge base—for the current implementation of
SEDAR. The relationship between the agents and knowledge base is shown in
Figure 11. The agents differ in their timing, intrusiveness, and intention for the
user. The error prevention critic attempts to steer users away from anticipated error
patterns before they have the chance to commit them. The error detection critic
complements the error prevention strategy by checking the solution for errors
concerning the rules in the flat and low-slope roof design knowledge base. Finally,
the design review strategy allows the user to select various solution subcomponents
to critique. In the case of roof design, solution subcomponents are roof subsystems
like the drainage system design.



USACERL TR 97/37

Design
Suggestion

Error
Detection
Critic

Error

Prevention Knowledge

Base

Critic

Design
Review Critic

Figure 11. Relationship between critiquing/suggestion agents and the
knowledge base.

The critic agents themselves are encoded in the file cma-main.Isp and are part of the
expert critiquing shell. The knowledge base, comprised of files of Goldworks III
rules in the \kb subdirectory under the gcl44\sedar directory, are specific to the roof
domain only.

The User Interface

The user interface is an augmented CAD system (AutoCAD™) that allows direct
manipulation of both the design and the criticism generated by SEDAR. This part
of the system may also be termed as the “front-end” of SEDAR; it is the medium
through which the interaction between the human designer and the critiquing sys-
tem takes place. Furthermore, the user interface constitutes a powerful design envi-
ronment within which the user may compose a design, control the critiquing system,
and view the generated critiques. Figure 12 shows a screen capture of the SEDAR
interface of a partially completed roof design and a critique generated by the system.
The menu displayed in the figure is the Action Menu from which the user selects
operations to perform on the design. The interface is divided into the Design, Sug-
gestion, and Dialog windows. The large area in Figure 12 containing the top-down
view of the roof design is the Design Window. Critiques generated by the system are




USACERL TR 97/37

27

iving

g the okject Just placed
ns.. from the menu to exaning
o them N
All/Center/Dynamic/Extents/Left/Previous/Vmaxindow/<Scale(xP)>. p
[Command: _'DDLMODES
Command:

Figure 12. The SEDAR user interface.

displayed here. The small window at the upper left corner of the Design Window is
the Suggestion Window. Critiques that involve design suggestions use this window
in addition to the Design Window. In Figure 12, the current suggestion is that a
hatch be placed on the design to allow access to the roof from below. The suggested
hatch object is shown in the Suggestion Window. Finally, the Dialog Window at the
bottom of the Design Window displays textual information, including prompts and
the textual portions of critiques.

The code for the user interface resides in the files under the \sedar directory. Be-
sides *.1sp files, files are available for the design objects and menus used in the user
interface.

The Critic Management Agent

The CMA is the control unit of the expert critiquing system. It receives and inter-
prets descriptions of user actions from the user interface, updates the representa-
tions on the blackboard, selects which critiquing strategies to apply, and activates
the proper critic agents. The CMA selects from one of four agents: three critiquing
agents (error prevention, error detection, and design review) and a simple design
suggestion agent. After the critiquing process is finished, the CMA gathers the
generated critiques, translates them into critique display descriptions that the user
interface understands, and sends them to the user interface. The CMA operates in



28

USACERL TR 97/37

a loop called the iterative critiquing cycle, which is described in the second part of
this chapter. The main file containing the CMA Lisp functions is cma-main.lsp.

System Operation and Information Flow Across Components

System Operation: The lterative Critiquing Cycle

SEDAR uses the iterative critiquing cycle, which forms the framework in which all
SEDAR’s actions are organized. The cycle is maintained by the CMA and has six
stages, as shown in Figure 13. Each phase of the cycle is annotated with the com-
ponents that are involved in its completion. This section describes the iterative

critiquing cycle at a high level.

Stage 1: Receive User Input. The user selects an action to perform, such as adding,
moving, deleting, or resizing existing design objects, or selecting goals for review.
Depending on the selected action, the interface may query the user for additional
information. The interface then sends a message to the critic management agent
notifying it of the user’s action and providing information that the critic manage-

ment agent will need.

Start

% Stage 1
Receive
User
Input
Stage 6 ' %
User Interface Stage 2
Display Update
Critiques Designer's Task Model
and

User Interface DBS|gn Representatlon

Critic Management
Agent

Stage 5 Stage 3
Generate Form Active
Critiques Ruleset
Critic Management% Stage ¢ @ Critic Management

Agent Perform Agent
Design

Evaluanon

Critic Agents

Figure 13. The iterative critiquing cycle.




USACERL TR 97/37

29

Stage 2: Update the DTM and the Design Representation. Upon receiving the
message from the user interface, the first task of the CMA is to update the DTM.
Specifically, the CMA uses the previous DTM activation pattern and the current
user action to decide which tasks in the DTM to make focus or active for the current
critiquing session. This method of task activation allows for greater flexibility in the
interaction between the user and the system. For example, some users may like to
operate on multiple tasks simultaneously. While SEDAR does not actively enforce
a particular ordering of satisfaction of its goals, it does have the capability to provide
suggestions as to which tasks should be dealt with before or concurrently with the
current set of tasks.

The second task for the CMA is to modify the design representation according to the
user action. For example, the CMA may make a “temporary” object or a “real”
object. If a “real” object is instantiated on the design representation, additional
semantic links may also be created at this time to link the new design object to the
previously existing objects.

Finally, the critiquing strategy is selected. Depending on the user’s actions, the CMA
selects from the error prevention, error correction, and design review critiquing
strategies. The method of selection is static in nature.

Stage 3: Forming the Active Rulesets. During this stage, the set of design codes
to be applied for the current critiquing cycle is created. All design codes are taken
from the constructibility knowledge base. Only the rules linked to tasks with focus
and active activations in the DTM are included in this set.

The CMA may then modify the rules in the active ruleset, depending on the
critiquing strategy. This modification is done to focus the activity of the next stage
on relevant objects and to improve efficiency.

Stage 4: Perform the Design Evaluation. The active set of design rules is then
applied to the existing design on the blackboard. Each design code rule is a con-
dition-action rule taken from a published handbook of low-slope roofing specifica-
tions (NRCA 1985). If the preconditions of a design code rule match a set of features
in the design representation, a design code violation is specified with respect to those
features. In every critiquing cycle, only a subset of the knowledge base of rules is
applied to the design. This improves the efficiency of the design evaluation stage
and, more importantly, ensures that the set of critiques and suggestions provided
by the system is appropriate given the state of the design and is relevant to the
user’s current focus.



30

USACERL TR 97/37

Stage 5: Generate Critiques. In this stage, the violation data from the previous
stage are collected by the CMA and are used to generate the critiques seen by the
user. An overview of this important element of the process is described here.

Critiques have separate graphical and textual portions. The CMA uses design-code
specific information to create a graphical critique component in a graphical language
understood by the user interface. In particular, the violation data is used to instan-
tiate unbound variables in a stored graphical component template. The textual com-
ponent generation process follows the graphical component generation. An explana-
tion template containing unbound variables is instantiated with the violation data.

During this stage the critiques are also arranged in order of display to the user. The
DTM plays an important role here; the critiques most relevant to the current focus
of the user have greater priority over the rest of the critiques, which are arranged
according to a serialization of the before-task partial task ordering.

Stage 6: Display Critiques. Depending on the critiquing strategy, the user interface
may show the graphical/textual critiques immediately or by user request. The error
prevention strategy displays all of the generated critiques on the drawing without
user prompting. The error correction and design review strategies, however, simply
display a notification to the user that critiques were found.

After this stage, the system loops back to Stage 1 and waits for a user action on the
design. The process terminates when the user exits from SEDAR.

Known Problems. During the development of the expert critiquing system, the
distinction between the iterative critiquing process and the individual critic agents
was blurred due to pragmatic concerns. As a result, the task of carrying out the
iterative critiquing process is split between code for the CMA and code for the
individual Critic Agents. More specifically, Stage 5, which is conceptually the
responsibility of the CMA, is actually performed by the Critic Agents themselves.
This problem will be dealt with in future releases of the system.

Detailed System Operation and Information Flow Across Stages

Although a complete description of the system behavior is outside the scope of this
report, an attempt will be made to provide the reader with a more detailed account
of system activities. This account is, as in the previous section, defined in terms of
the iterative critiquing cycle described at a high level above. Particular attention
is given to the interactions between the expert critiquing shell and the domain-
dependent portions of the system described in the first section of this chapter.




USACERL TR 97/37

31

Stage 1: Receive User Input. When the user selects an entry from the Action
Menu, an appropriate callback function is activated. For example, suppose the user
selects New Object... from the Action Menu. The new-object-callback function calls
a function that activates the New Object Dialog box. After the user selects a type
of object, the new-object-callback function creates a unique identifier for the object
and calls the CMA, passing along the user request and additional information about
the object. This is accomplished by using a LISP function call to call-gcl. The
parameters to call-gcl are eventually evaluated by Goldworks; hence, to activate the
CMA, the initial component of the parameter to call-gcl is an s-expression containing
a call to the top-level function of the CMA. The new-object-callback function then
waits for the value returned from the CMA.

Information Transfer Between Stage 1 (User Interface) and Stage 2 (Critic Manage-
ment Agent). As noted in the previous paragraph, the call-gcl function is called with
an s-expression corresponding to an invocation of the top-level CMA function, ac-
message. The parameters passed to the CMA within this s-expression depend on the
type of request made in the user interface. The complete set of requests supported
by the CMA is described in the comment for the ac-message function in the file cma-
main.lsp. In this case, the user has requested a new object placement, and the s-
expression resulting in the call to ac-message is:

(ac-message <query-id> “user-select-object” (<object-type> <object-id>)).

<query-id> is a number maintained by the system to keep track of requests and
information generated by the requests on the blackboard. The string “user-select-
object” identifies the type of user request. Since the user has just requested a new
object (and has not yet placed the object), the only object information available is the
<object-type> (e.g. roof-drains, ac-units-curbed) and the unique identifier of the
object, <object-id>.

Stage 2: Update DTM and Design Representation. Upon receiving the request the
ac-message function calls the appropriate LISP function to carry out the user
request. In general, the names of these functions correspond to the user request; for
example, the function called by ac-message given the user-select-object request is do-
select-object.

The do-select-object function embodies the activities of the error prevention critic
agent. It first updates the DTM according to the user request and the type of object
selected by the user. All tasks directly related to the new object type are asserted
as focus tasks. All focus tasks from the previous iteration and all tasks related to
the new focus tasks by an interferes-with relation are asserted as active tasks. The



32

USACERL TR 97/37

activations, which are asserted into the working memory, look something like the

following:

(focus-task <query-id> <task-name>)
and
(active-task <query-id> <task-name> <activation-type>).

The set of these assertions record the state of the DTM for the current request.
Previous focus-task and active-task assertions are not retracted from the working
memory and are usea as a history of DTM activations.

After updating the DTM, the do-select-object function makes a shadow instance of
the selected object type in the design representation. A shadow instance is simply
an instantiation of the object type without slot information (since the location of the
object is not known). The shadow assertion is made so that the rules inside the
knowledge base can be defined with consistent semantics. Conceptually, each rule
in the knowledge base checks on a relationship between two or more design objects.
Thus a shadow object is required in this case.

Stage 3: Form Active Ruleset. After performing the updates of the DTM and the
design representation, the do-select-object function then forms the set of active rules
to apply for the critiquing episode. Since this stage is within the same function as
the previous stage, no information is explicitly transferred between system com-
ponents. The process of forming the active ruleset is embodied in two functions: gez-
active-rules, which collects the set of rules from the knowledge base based on the
state of the DTM, and make-object-select-ruleset, which modifies the selected rules
to work with the error prevention critic. The get-active-rules function simply
generates a union of the rules associated with focus and active DTM tasks. The set
is returned as a list of rule names to make-object-select-ruleset. Make-object-select-
ruleset then forms the set of active rules by modifying each rule in the selected set.
Each rule is specialized to apply to the new shadow object so that the constraint
information generated by the application of these rules is pertinent to not only the
current state of the DTM but also the newly selected object type. After modifying
the rules, the make-object-select-ruleset function defines a new rule set in Goldworks
III containing the modified rules and deactivates it in preparation for the next stage.

Stage 4: Perform Design Evaluation. The new rule set is activated and allowed to
forward chain to completion on the design representation. The result of the Perform
Design Evaluation stage for the error prevention critic is a set of check-condition




USACERL TR 97/37

33

assertions made by the active rules. These check-condition assertions have the
form:

(check-condition <notification-id> <query-id> <rule-name> <variable-binding-list>).

The <notification-id> is a unique identifier for the check-condition assertion. The
<query-id> is as previously defined. The <rule-name> represents the rule that
created the check-condition assertion. Finally, the <variable-binding-list> records
the bindings of rule variables to objects in the design representation. Since the rules
were originally modified to apply to the shadow object in Stage 4, one of the ele-
ments of the <variable-binding-list> is always a binding involving the shadow object.
For other critic agents this will not be the case.

Duals of check-condition assertions are removed during this stage. An example of
duals is:

(check-condition CONST-AREA-1 1 RULE-6 ((“?drain-1” DRAIN-1) (“?drain-2”
DRAIN-2)))

and

(check-condition CONST-AREA-2 1 RULE-6 ((“?drain-1” DRAIN-2) (“?’drain-2”
DRAIN-1))).

The primary difference between the two check-condition assertions is that the
bindings of design objects to rule variables are reversed. The second check-condition
assertion is eliminated.

Another issue is that of assertions resulting from rules of different levels. Rules in
the knowledge base are separated into three categories: physical-level, specification-
level, and preference rules. Physical-level rules check for physical impossibilities
(e.g., placing a drain outside the roof field). Although these are “common-sense”
rules, they of all rules are the most important. Specification-level rules are those
specified in published code books. For the case of flat and low-slope roof design,
specification-level rules were taken from the work (East et al. 1995) and other
handbook sources (NRCA 1985). An example of a specification-level rule would be:
“Drains should be placed at least 1 foot away from other drains.” Finally,
preference-level rules encode individual designers’ preferences. A roof designer may
like to place overflow drains close to roof drains to alleviate ponding from drains
clogged by debris. Another designer may choose to use scuppers cut through the
parapet wall surrounding the roof field for overflow drainage instead. The check-



34

USACERL TR 97/37

condition assertions resulting from physical-level rules are given preference over
specification-level rules, which are in turn given preference over preference-level
rules. For the error prevention critic, all check-condition assertions are kept and
passed to the next phase, but for the error detection and design review critics only
the constraint violations (for a particular object) of the highest level are kept and

passed to the next phase.

Stage 5: Generate Critiques. After the active rulesets are allowed to forward chain
in Stage 4, the resulting check-condition assertions are collected and turned into
graphical/textual critiques. Each rule has both a textual and graphical template
which is used to generate the critique. The templates reference variables used
within the rule. For example, RULE-21, which checks to see if a piece of equipment
is accessible via walkways from the roof access mechanism, has the following two

critique templates:

Textual Critique Template:
(“There should be a walkway from “ “?e1” “ to “ “?e2” “.”)

Graphical Critique Template:
(MULTIPLE-DRAW
(DRAW-BOUNDARY-AREA “?¢1” UNKNOWN INTERIOR 0)
(DRAW-BOUNDARY-AREA “?¢2” RECTANGULAR-
COMPOSITION INTERIOR 0)).

The textual critique template consists of a list of strings. Each string may either be
text (e.g., “There should be a walkway from” and “.”) or a variable (e.g., “?e1”). Vari-
able strings have a ? as the first character, and refer to variables within the body of
the rule. The graphical critique template consists of a recursive list of graphical
commands for the User Interface, and also contains strings corresponding to vari-
ables in the rule body. Critique generation for each check-condition assertion from
Stage 4 is a replacement of the variables within the templates with the variable
bindings in the <variable-binding-list> portion of the check-condition assertion.

The generated textual and graphical portions of the critique are prepended with
information about the source of the critique:

(<constraint-area-name> <rule-name> <task-name> <violation-level> <graphical-
critique-portion> <textual-critique-portion>).

The <constraint-area-name> is taken from the check-condition assertion and serves
as the unique identifier of the critique in both the expert critiquing shell and the




USACERL TR 97/37

35

user interface. <rule-name> is the name of the rule that generated the critique.
<task-name> is the name of the focus or active task associated with the rule.
<violation-level> declares the level of the rule (physical-level, specification-level, or
preference). Finally, <graphical-critique-portion> and <textual-critique-portion> are
the components of the critique described previously. An example of an instance of
this construct would be: '

( CONST-AREA-1
RULE-21
WALKWAY-LAYOUT
SPECIFICATION-LEVEL
(MULTIPLE-DRAW
(DRAW-BOUNDARY-AREA AC-UNITS-1 UNKNOWN INTERIOR 0)
(DRAW-BOUNDARY-AREA HATCHES-2 RECTANGULAR-
COMPOSITION INTERIOR 0))
(“There should be a walkway from AC-UNITS-1 to HATCHES-2.”)
).

Information Transfer Between Stage 5 (CMA) and Stage 6 (User Interface). The
information passed back to the waiting user interface component varies according
to the user requested action. In the case of a user-select-object action, the do-select-
object function returns two components in a list: the set of constraint areas result-
ing from Stage 5 and the set of current DTM activations. Both of these sets are
represented as lists; thus the whole return value has the following form:

(<constraint-area-1> <constraint-area-2> <constraint-area-3> ...)
(<task-activation-1> <task-activation-2> <task-activation-3> ...)

The information passed back to the user interface differs according to the user
request. All CMA functions pertaining to user requests may be found in the file
cma-main.lsp.

Stage 6: Display Critiques. After the CMA returns the list of constraint areas and
task activations to AutoCAD, the original new-object-callback function takes the set
of constraint areas and proceeds from the original call to Goldworks. The display
of the critiques is handled differently depending on which critic agent generated the
critiques. Since the goal of the error prevention critic is to display “off-limits”
situations to prevent errors from occurring, all the generated critiques are displayed
immediately in the drawing area by iterating over the draw-constraint-action



36 USACERL TR 97/37

function. In the case of the error detection critic, only a textual message notifying
the user of the constraint violations are displayed; the user may then page through
the critiques using additional dialog boxes.

System Reuse

This final section of the chapter describes what domain-specific components are
required to use the SEDAR expert critiquing shell in other domains. In the previous
section, we have discussed the necessary domain-specific components of the
Blackboard (the DTM, the Design Object Hierarchy, and the Design Representation)
and of the Critiquing Agents (the central knowledge base used by the critiquing and
suggestion agents).

Adapting the Blackboard Components

The Designer’s Task Model. The DTM should be created from protocol analyses
with human experts in the problem domain. Combining expertise (e.g., forming a
union of the commonly encountered tasks) is allowed because the DTM is used to
track rather than guide user behavior. As such, the set of tasks in the DTM may be
a superset of the tasks of any individual designer. One pitfall that must be account-
ed for is the possible existence of multiple fundamentally different task breakdowns
for the problem domain; in this case, additional functionality to represent, select,
and update multiple DTMs (each of which represents one of the different task
breakdowns) is needed.

The DTM for a problem domain is defined in two files: frames.lsp and assert.lsp. The
frames.lsp file contains Goldworks III frame definitions that represent the task-
subtask semantic links among the tasks. An example frame definition is:

(DEFINE-FRAME DRAIN-LAYOUT
(:IS DRAINAGE-SYSTEM-LAYOUT)).

This statement is a definition of the Drain-Layout task, whose parent is the
Drainage-System-Layout task. The assert.lsp file contains additional information
about the DTM, including lookup knowledge about the subtree structure of the
DTM, for example:

(goal-subtree-assoc architectural equipment-layout
(equipment-layout air-handler-layout walkway-layout chimney-layout)).




USACERL TR 97/37

37

This goal-subtree-assoc assertion lists all of the tasks in the subtree of the
Equipment-Layout task, including Equipment-Layout itself. The interferes-with
semantic links are encoded as possible-goal-interference assertions:

(possible-goal-interference architectural equipment-layout ventilation-shaft-layout).

The possible-goal-interference assertion specifies a pair of possibly interfering tasks.
In the example, the tasks are Equipment-Layout and Ventilation-Shaft-Layout; the
layout of mechanical equipment on the roof (e.g., air-handling-units) may interfere
with the layout of ventilation shafts.

Each task has a set of trigger objects. When the user selects a new object for the
solution, all tasks in the DTM with a trigger object of the selected object type are
activated as focus tasks. A task may have more than one trigger object. An example
of a pairwise goal-object-assoc assertion defining a walkway as a trigger object for
the Walkway-Layout task is:

(goal-object-assoc architectural walkway-layout walkways).

Finally, each task in the DTM is associated with a set of rules from the knowledge
base for the Critiquing Agents. The union of the set of rules associated with focus
and active tasks for a critiquing episode constitutes the selected set of rules for that
episode. Rule 21 checks whether each piece of equipment on the roof is accessible
via a walkway from the roof access mechanism. Because air-handling-units are con-
sidered equipment, the following assertion exists:

(rule-goal-assoc architectural rule21 air-handler-layout).

The Design Object Hierarchy. Like the DTM, the Design Object Hierarchy is
arranged along class-subclass relations. The objects in the Design Object Hierarchy
define the basic building blocks of solutions in the problem domain. Each “node” in
the hierarchy constitutes a “class” of objects. When the user selects a type of object
to include within the solution, an instance of the class of the selected object is
created.

Each design object class has two types of slots: inherited and unique. In SEDAR,
each design object class has two types of inherited slots: slots that pertain to the
shape of the object and slots that pertain to the material of the object. For reuse of
the geometric libraries written for the flat and low-slope roof design version of
SEDAR, the shape of the object must either be a Circle or a Rectangular-Composi-
tion. All objects within the flat and low-slope roof design version of SEDAR have



38

USACERL TR 97/37

one of these two shapes. These objects are described at length in Chapter 5, which
discusses the reuse of the geometric reasoning libraries. The slots that pertain to
the material of the object are also domain-specific and may not be needed for other
problem domains. In general, design objects may have any number of inherited
slots. Besides the inherited slots, each class of design object may have its own set
of unique slots that describe features specific to the class. An example of the set of
unique slots for the class of expansion joints on a roof is:

(DEFINE-FRAME Exp-joints
(IS (TERMINATION-EDGE-COMPONENTS RECTANGULAR-COMPOSITION))
(ENDPOINT1 :DEFAULT-VALUES (NIL))
(ENDPOINT?2 :DEFAULT-VALUES (NIL))
(WIDTH :CONSTRAINTS (:LISP-TYPE NUMBER))
(user-modifiable-slots :default-values ((endpointl endpoint2 width)))
(activate-when-created-ruleset :default-values (expansion-joint-ruleset))
(activate-when-created-functions:default-values((complete-expansion-joint-slots)))).

The name of the class is Exp-joints. The second line defines the direct ancestors of
the Exp-joints class; it is a form of Termination-Edge-Component and inherits shape
slots from the Rectangular-composition class of shapes. The Exp-joints class has
three unique slots: Endpointl, Endpoint2, and Width. The final three lines of the
Exp-joints definition contain more information about the class. The User-modi-
fiable-slots field contains a list of the slots that may be altered by the user. The
Activate-when-created-ruleset and Activate-when-created-functions fields contain
lists of rulesets and/or functions that act when a new instance of the object class is
created. For example, when a new expansion joint is created by the user, the
expansion-joint-ruleset will fire, and the complete-expansion-joint-slots LISP function
will be called with the name of the new expansion joint. These rulesets and
functions are located in the files obj-rule.lsp and obj-fn.lsp.

Finally, each new object type that is created should result in new assertions in

assert.lsp:

e goal-object-assoc assertions that link tasks to their trigger objects
U rule-object-assoc assertions that link rules in the knowledge base to object

classes.

The Design Representation. The design representation consists of a set of object
instances and a set of semantic links among the object instances. These two sets are
highly domain-dependent and are closely linked to the rules in the knowledge base;
the rules in the knowledge base may look for certain types of semantic links between




USACERL TR 97/37

39

object instances. The semantic links may be general spatial relation links (e.g.
distance-greater-than, area-enclosed-within) or they may be more specific. A set of
general spatial relation links are provided by the geometric reasoning library
discussed in Chapter 5. Domain-dependent semantic links are often defined in the
files obj-rule.lsp and obj-fn.lsp, which contain the rulesets and functions called
automatically when an object is created.

Adapting the Critiquing Agent Knowledge Base

Each rule in the knowledge base has three parts: trigger, condition, and rule infor-
mation. The condition-action nature of each rule was captured in the trigger and
condition portions, which are themselves expressed in a condition-action form using
the Goldworks III rule syntax. The trigger portion of the design code is used to
check the solution for the basic applicability of the rule. This involves checking the
solution for the correct types of objects and whether or not the particular set of
objects has ever been checked before. If the basic applicability conditions are
satisfied, the condition portion of the rule is invoked. The condition portion usually
involves the calculation of a relationship between the two objects, and is generally
more expensive to apply than the design code trigger. If the condition portion is
satisfied, a note is made of the violation and a critique is generated. The trigger and
condition portions of Rule 21 is in Figure 14.

Both the trigger and condition portions are expressed as if-then rules. The ante-
cedent of the trigger portion is a conjunction of conditions. The first two conditions
establish the type of objects (here any type of equipment and a hatch) and bind
instantiated design objects to the variables (?el and ?e2). The third condition
(not-equal ?el ?e2) ensures that ?e1 and ?e2 are not the same object. The last condi-
tion of the trigger checks to see if the rule has been checked previously and found
not to be in violation. If it has been checked, then there is no reason to continue
with the current rule check. The record of previously checked rules is updated when
design objects are moved, resized, or deleted; clearly, if a design object has been
modified, then the previous rule checks are no longer valid.

The consequent of the trigger portion asserts a message (a check-condition assertion)
for the condition portion of the design code. In particular, it establishes an identi-
fication tag for the rule check and the variable bindings for the check. In the case
of a user select object request (the error prevention critic), forward chaining of the
rules in the knowledge base stops at this point. However, for the error detection and
design review critics, and the simple suggestion critic, the condition portion of the
rule is then applied. The condition portion of the rule is not applied for the error
prevention critic because the information about the shadow object (e.g., the physical



USACERL TR 97/37

40

*apod ubisap e jo suojliod uolpuod pue 1366141 ay “p1 a4nbiy

((((za¢ z1e) (19¢ 134)) 1z Asanb-qualinag, aweus, UORE(OIA)

NIHL

(( ) (z3é 18¢ épajaauund) lenba)

(({(za¢ zie) (184 11¢4)) Lgans Aanb-quainag, aweus, UoHpUOI-»a3ya)
(0 Auoud:) uomipuoa-Lzajnt ajni-auyap)

UOIHO4 uoiipuod

((((zae wzadw) (134 41344)) LzaIint Auanb-Juaiinds sWeU-UHE|DIA-WaUZ LUDIIPUOI-433ya)
NIHL
(0 ((z3e wzadn 381) (184 4184, 181} LZaIN, [BNP-3J0)a0-paxIaya) |enba)
(z3é 18¢ lenba-jou)
(sayoey si za¢ aaueisul)
(Juawidinba 1 L3¢ aauelsul)
(0ol Awoud:) 1aBBL1-1 zajny ajni-auyap)

uoipod 1ebbii |

"Ualey B wod) SABMYEM BIA 3|QISSaI0R
ag pinoys jooJd ay; uo juswdinbg 1z ainy

apon ubisaq




USACERL TR 97/37

41

location, the unique slot values) are not known at that time. This information is
known when the other critics and suggestion agents are applied.

The antecedent of the condition portion performs the actual violation check between
the objects. In the example, this check is performed in the line (equal (connected?
%e1 ?¢2)'()). The connected? relation is implemented as a LISP function that checks
to see if the two design objects are accessible via a sequence of walkways. If the
relation fails, the equipment object is not accessible via the hatch and a violation
message is created, to be processed in the Generate Critiques phase (Stage 5) of the
iterative critiquing cycle.

The reason for splitting the trigger and condition portions is discussed in detail in
Chapter 4. The rule frame portion corresponding to Rule 21 is shown in Figure 15.
The rule frame portion contains information about the rule: the variable-object type
association list, the rule level, the rule type, and critique generation information.

The variable-object type association list relates the variables in the body of the rule
to legally bindable object types in the Design Object Hierarchy. For Rule 21, the
variable ?eql should be bound to an instance of Equipment, and the variable ?eq2
should be bound to an instance of Hatches.

The rule level slot defines the level of the rule: physical-level, specification-level, or
preference-level.

Each rule may either be an object-relation rule or an object-existence rule (rule type
slot). Object-relation rules detect problems between existing objects on the design
and are rules used by the critiquing agents; object-existence rules make suggestions
for adding (or removing) objects to and from the design and hence are used by the
simple design suggestion agent.

As was discussed in the second section of this chapter, the critique generation
information from the text, bindable-list, explanation, and violation-action slots is
used to create the graphical and textual critiques described in Chapter 4. The
graphical component of the critique is generated from the contents of the viola-
tion-action slot and the textual component of the critique is generated from the
contents of the explanation slot.

The knowledge base may be spread across several files. For the version of SEDAR
for the flat and low-slope roof domain, the files containing the trigger and condition
portions of the rules may be found in the sedar\kb subdirectories. Appendix A lists
the specific files. When creating a new knowledge base, the knowledge base files for



USACERL TR 97/37

42

‘aweld ajny ayl ‘g ainbi4

({0 4OI43LNI
zo_tmo_”n_goo-miaozﬁnmm WL {mmq.>mqoz:om.§4movu
0 HOIHILNI NMONANN o184, YIHY-ASYANNOB-MYHa )

MYHA-T 1IN HOIY-LOREIDIA
(@B w 01 w186, o WOL ABA|EM B B0 PINOYS B1BYL,) uoneue|dx3g
(LNIWINDT Z36) LNIWAIND3T L3N 1sI7-a|0epulg
L1O¥H3LINI-LZITINY Uaalq-3algo
NOILIONOD-1Z3INH Uolpuo)
© H39914L-1z31NY 18661
< U21BY 8yl woll sAes|ea BlA 8((1SS823E ag pInoys Juswdinba |1y, - pal
| L suewad
JONILSKI-LOIAr0 adAL-a|ny
NOILYQI4103dS |aAaT]
231Ny allep

51015

SAAOINDISIJT Wsled

L Z3TNS 22Uelsu|




USACERL TR 97/37

43

the flat and low-slope roof domain may be removed by altering the set of files loaded
in a.lsp. The rule frame portions of the rules are defined with the trigger and con-
dition portions of the rules. The semantic link assertions made in assert.lsp should
also be updated to reflect the new set of rules in the knowledge base. Finally, the
file kb.lsp contains a registry of all of the trigger and condition portions of rules in
the knowledge base and should be updated to reflect the content of the new
knowledge base.

Conclusion

Adapting SEDAR to work with new domains requires the modification of two
components of the existing architecture — the domain-specific portions of the
Blackboard (the DTM, the Design Object Hierarchy, and the Design Representation)
and the domain-specific portions of the Critiquing Agents (the knowledge base).
Altering the DTM requires a cognitive task analysis of human experts in the new
problem domain. The Design Object Hierarchy defines the fundamental building
blocks of solutions for the problem domain. The Design Representation, consisting
of object instances and semantic links amongst the object instances, is the system’s
representation of the human user’s partial solution. The semantic links may include
links created by the 2-D geometric reasoning routines (discussed in greater detail
in Chapter 5) and domain-specific semantic links. The knowledge base consists of
domain rules for critiquing the human’s solution and for making suggestions. The
knowledge base is discussed in greater detail in Chapter 4, which discusses how to
use the existing flat and low-slope roof design knowledge base for other applications.



44 USACERL TR 97/37

4 The Flat and Low-Slope Roof Knowledge
Base

SEDAR Knowledge Base

To date, the flat and low-slope roof design knowledge base is a partial implementa-
tion of 120 of the constructibility codes specified in East et al. (1995). While most
of the major component types have been addressed in the knowledge base, not all
of the codes specified were amenable for use in SEDAR. The codes used in the
existing knowledge base pertained to the layout of roof components in the roof field.
Some rules pertained to the construction process rather than the design of roofs.
Other rules dealt with construction details, a level of specificity not supported by the
current version of SEDAR. While the implementation of the codes in East et al.
(1995) is incomplete, the existing implementation is believed to be an acceptable
starting point for a software system.

Knowledge Base Reuse

Because the constructibility codes are defined as Goldworks III rules, researchers
who wish to develop systems for flat and low-slope roofs in Goldworks IIT may be
able to reuse SEDAR’s knowledge base. To reuse SEDAR’s knowledge base, four
components of the current SEDAR system should be retained:

. the files containing the rules in the knowledge base

. the set of roof components defined in the Design Object Hierarchy
o the geometric reasoning libraries (found in sedar-ge.zip)

. the semantic links between the roof components.

The necessary components (excluding the geometric reasoning libraries) have been
zipped using Pkzip v. 2.04 into the file sedar-kb.zip.

The files containing the rules in the knowledge base are in files under the sedar\kb
subdirectory. These files are:

. areadiv.lsp




USACERL TR 97/37

45

¢  drains.lsp

*  equip.lsp

. expansio.lsp
e  rooflsp

o scuppers.lsp
N vents.lsp

The files contain the trigger and condition portions of the rules shown below:

(define-rule rule21-trigger (:priority 100)
(instance ?el is equipment)
(instance ?e2 is hatches)
(not-equal ?el ?e2)
(unknown (instance ?el is hatches))
(unknown (instance ?el is walkways))
(unknown (instance ?e2 is walkways))
(equal (checked-before-dual 'rule21 (list "?e1" ?el) (list "?e2" ?e2)) '0))
(bind ?new-violation-name (violation-name))
(bind ?current-query *CURRENT-QUERY*)
11 THEN
12 (check-condition ?new-violation-name ?current-query rule21 (("?el"” ?el)
("?e2" 7e2))))
13 (define-rule rule21-condition (:priority 0)
14 (check-condition ?name ?current-query rule21 ((?t1 ?el) (?t2 ?e2)))
15 (equal (connected? ?el ?e2) '()
16 THEN
17 (retract (check-condition ?name ?current-query rule21 ((?t1 ?el) (?t2 ?e2))))
18 (violation ?name ?current-query rule21 ((?t1 ?el) (?t2 ?e2))))

© 00 30 O W N K

[EY
o

The antecedent of the trigger portion of the rule contains type checking information
(Lines 2 to 7), a check for a previously cached attempt to apply the rule (Line 8), and
additional bindings for the unique identification (id) of the rule application attempt
(Line 9) and the current query number (Line 10). The consequent of the trigger
portion is a single check-condition assertion into the working memory of SEDAR
(Line 12), which contains the unique id, the query number, the rule name, and the
variable/object binding list. The condition portions of the rules are designed to fire
only after all the trigger portions of the rules have been fired. The trigger portions
of the rules are assigned a priority of 100 (Line 1), while the condition portions of the
rules are assigned a priority of 0 (Line 13). This prioritization allows the system
developer to “insert” rules that fire between the application of the trigger and
condition portions of the rules. For example, the developer may wish to eliminate



46

USACERL TR 97/37

duals of rule applications (described in Chapter 3), which may be accomplished by
writing rules at intermediate levels of priority (i.e., less than 100 and greater than
0) that remove dual check-condition assertions. The first line of the antecedent
(Line 14) checks for the check-condition assertion made by the trigger portion of the
rule and binds the necessary variables. Line 15 contains the possibly expensive
check of the relationship between the objects specified in the rule—in this case, ?el
and ?e2 are checked to see if they are connected?. The connected? function is a
domain-specific function that tries to find a path (defined by walkways) between the
roof-mounted equipment bound to ?el and the hatch bound to ?e2. If the two
components are not connected (i.e., the call to connected? returns nil [false]), the rule
consequent is applied. In the rule consequent, the original check-condition assertion
is replaced with a violation assertion containing the same information. Thus, a
record is kept of rule violations (violation assertions) as well as previous rule checks
of object relationships that are satisfied by the existing design (the surviving check-

condition assertions).

Each of the design codes is also associated with a rule frame component. The rule
frame, described in the third section of Chapter 3, contains information pertaining
to the applicability of the rule and constraint templates. These templates are non-
essential components with respect to reuse of the roof knowledge base, but are
included for the additional reference.

To use the set of rules in Goldworks III, the reader is referred to the Goldworks III
reference manual, which describes how to add these rules to a rule set and how to
apply these rules by activating the rule set, calling the forward-chain function, and
then deactivating the rule set.




USACERL TR 97/37

47

5 Geometric Reasoning Libraries

Description

This component contains LISP functions for computing various quantities and
properties related to the geometric positions of shapes in a 2-D Cartesian coordinate
system. Two files contain geometric reasoning routines:

geometry.lsp
decomp.lsp

The geometric reasoning functions in each of these files use filtering processes to
quickly eliminate obviously false solutions. Additionally, these function cache pre-
viously computed geometric relationships on the blackboard to speed up computa-
tion. These two files are included in the zipped file sedar-ge.zip. Finally, this library
assumes that objects are represented in terms of two types of shapes: circles and
rectangular-compositions, which are described below.

Data Structures

The functions in this component take objects as their arguments. These objects
should be Goldworks instances. They must have a shape-type slot, and the slot-
value for this must be rectangular-composition or circle. Each object must have a
coordinate-info slot.

If the object is a circle, the coordinate-info slot contains the center point of the object,
which is a two-element list, representing x-y coordinates. The object must also have
a “radius” slot containing the radius of the circle.

If the object is a rectangular-composition, the coordinate-info slot contains a list of
the vertices of the rectangular-composition. In addition, the object must have an
extent slot containing a list of two points that represent the bounding box for the
rectangular-composition. There must also be slots called vertical-borders and hori-
zontal-borders, containing lists of borders. A border is a two-element list (location
extent). The location of a vertical-border is its x-location, and the extent of a



48 USACERL TR 97/37

vertical-border is a list of two y-coordinates. The location of a horizontal-border is
its y-location, and the extent of a horizontal-border it a list of two x-coordinates.

Example Data Structures
The circle and rectangular-composition frames are:

(DEFINE-FRAME CIRCLE
(:IS OBJECT-GEOMETRY)
(COORDINATE-INFO :CONSTRAINTS (:LISP-TYPE LIST))
(RADIUS :CONSTRAINTS NIL :DEFAULT-VALUES (0.25))
(SHAPE-TYPE :DEFAULT-VALUES (CIRCLE)))

(DEFINE-FRAME RECTANGULAR-COMPOSITION
(:IS OBJECT-GEOMETRY)
(COORDINATE-INFO :DEFAULT-VALUES (NIL)
:CONSTRAINTS (:LISP-TYPE LIST))
(VERTICAL-BORDERS :DEFAULT-VALUES (NIL)
:CONSTRAINTS (:LISP-TYPE LIST))
(HORIZONTAL-BORDERS :DEFAULT-VALUES (NIL)
:CONSTRAINTS (:LISP-TYPE LIST))
(SHAPE-TYPE :DEFAULT-VALUES (RECTANGULAR-COMPOSITION))
(EXTENT :DEFAULT-VALUES (NIL)
:CONSTRAINTS (:LISP-TYPE LIST)))

A portion of an instance of the circle frame is:

(:IS ATTIC-VENTS)
(COORDINATE-INFO (62.7 36.2))
(RADIUS 0.25)

(SHAPE-TYPE CIRCLE)

A portion of an instance of the rectangular-composition frame is:

(:IS AC-UNITS-CURBED)

(COORDINATE-INFO ((86.3 62.7) (89.3 62.7) (89.3 59.7) (86.3 59.7)))
(VERTICAL-BORDERS ((86.3 (59.7 62.7)) (89.3 (59.7 62.7))))
(HORIZONTAL-BORDERS ((59.7 (86.3 89.3)) (62.7 (86.3 89.3))))
(SHAPE-TYPE RECTANGULAR-COMPOSITION)

(EXTENT ((86.3 59.7) (89.3 62.7)))




USACERL TR 97/37

Major Functions and Their Return Values

In geometry.lsp:

(compute-distance object] object2) - Given two objects, find the minimum
distance between the objects.

(complete-overlap objectl object2) - Returns 't if object2 is completely
contained within objectl. Returns nil if not.

(no-overlap objectl object2) - Returns 't if objectl and object2 have no
overlap except possibly on a point or a line. Returns nil otherwise.

(adjacent objectl object2) - Returns 't if objectl touches object2. Returns
nil otherwise.

(intersection objectl object2) - Returns 't if objectl intersects object2, nil
otherwise. This function is the opposite of no-overlap.

(aligned object1 object2 tolerance) - Given two adjacent objects, returns 't
if one of their edges is aligned within the given tolerance. Returns nil
otherwise.

(next-to-outside object1 object2) - Returns 't if object1 is next to object2 on
the outside. Returns nil if not.

(next-to-inside objectl object2) - Returns 't if object2 is completely
contained within objectl and is next to objectl. Returns nil other-
wise.

(area-of object) - Given an object, lookup or compute its area and return
it.

(compute-distance objectl object2) - Computes and returns the distance
between two objects.

(north-of rectl rect2)

(south-of rectl rect2)

(east-of rect1 rect2)

(west-of rectl rect2) - Given two rectangular areas (simple rectangular
areas, not complex rectangular composition), return 't if the desired
relative positions are true. Returns nil otherwise.

(exceeds-max-distance-p obj obj2 maxd) - This function is intended to
quickly check if the distance between two objects exceeds maxd. Note
that if this function returns T, the two objects are definitely more
than maxd apart. However, if this function returns nil, the objects
might still be more than maxd apart. The purpose of this function is
to quickly filter out pairs of objects that are far apart.



50 USACERL TR 97/37

In decomp.lsp:

(maximum-decomposition rect-obj) - Takes as argument the name of a
rectangular-composition. Returns a list of the maximal set of simple
rectangular regions making up the rectangular-composition.

(horizontal-decomposition rect-obj) - Takes as argument the name of a
rectangular composition. Returns a list of the set of horizontal slices
of the rectangular composition. Each slice is a simple rectangular
region.

(vertical-decomposition rect-obj) - Takes as argument the name of a rec-
tangular composition. Returns a list of the set of vertical slices of the
rectangular composition. Each slice is a simple rectangular region.

(subtract-area start-list subtract-list) - Takes as arguments two lists of
rectangular extents. Geometrically “subtracts” the extents in sub-
tract-list from start-list and returns what is left. More precisely, the
areas of overlap between start-list and subtract-list are removed from
start-list and the remainder is returned as a list of rectangular
extents (or possibly an empty list if nothing is left).

Besides these major functions, numerous supporting functions have also been
written for the geometric reasoning library, and are contained in the files
geometry.lsp and decomp.lsp.




USACERL TR 97/37

51

AutoCAD Information Display Functions

Besides the reuse of the user interface in the context of the expert critiquing shell,
two aspects of the interface may be reused by interface developers working within
AutoCAD. The first reuse component is that of the text display boxes used to display
the textual portions of critiques in the AutoCAD drawing screen (Figure 16). The
second reuse component is the design objects dialog box used to select an object from
a palette (Figure 17). Each of these components is described below and included in
the file sedar-ac.zip.

Text Display Boxes

File: ac-expl.lsp — This component contains AutoLISP functions for displaying
textual explanations in a solid rectangle overlaying an AutoCAD design. The expla-
nation box may be temporarily displayed and then erased without affecting the rest

AutoCAD - UNNAMED b b
Flle Edlt View Assist Draw Construd Modify Settings Render Model SEDAR Help

| 94.0483,7.0519

ROOF— l*{}f”)T}?thl"% 1|m1hf lhew a hatch to
allow access. [ l

i 1
.

azre are violoTl and suggestlons nvolving the object Just placed
You nay chooses Violotlons. and ‘ugqe;ﬂun—.. from the menu to exanine
w then,
Command: _'DDLMODES
Command: _'DDLMODES
Command:

Figure 16. Example of a text display box.



52

USACERL TR 97/37

of the drawing. The explana-
tion box is drawn on a layer

Please choose the type of the new object.

New Object - Lo

called the SHADOW layer.

Expansion Joint
This layer needs to be created P

Fan

elsewhere. Hatch

Hot Stack

iMasonry Chimne
The color of the explanation Mech Unit .

box will be the default color of Owverflow Drain

the SHADOW layer. The text Querllow Scupper Masaonry
will be white, except for the in; Vent Chimney

object names, whose colors are
determined by the function

get-color-from-violation-type Figure 17. SEDAR architecture.
and the global variable

*SECONDARY-COLOR*.
Major Function

(draw-explanation-box-and-text object-list explanation-list violation-level)
Parameters: object-list: List of names of objects involved in the explanation
explanation-list: The explanation in the form of a list of
strings. Object names are separate strings,
with a leading ? as a sentinel.
Here is a sample explanation-list:
("There should be a walkway from "
"?AC-UNITS-CURBED-1" " to " "?"HATCHES-1"
"y

violation-level: Either physical, specification, or preference

This function may be reused in multiple ways. If used in an expert critiquing
system that provides explanations of violations, then it can be used as it was
originally intended. The object-list will contain the list of objects in the design that
are referred to in the explanation. When the explanation box is displayed, the object
names within the explanation will be colored differently from the rest of the text.

Alternatively, this function can be used simply to write out any string in a box over-
laying an AutoCAD design. In this case, object-list and violation-level would be set
to nil. Explanation-list would be a list of one element—the string to be displayed.

Note that this function does not check if the text will fit within the explanation box.
Four lines of text will fit with the given settings.




USACERL TR 97/37

Supporting Functions

(lower-left-of-exp-box object-list)

(draw-explanation-box the-point)

(get-first-word string)

(trim-leading-whitespace string)

(get-leading-whitespace string)

(all-spaces string)

(fits str-test left-x right-x ht)

(my-textbox string height)

(show-text string start-location left-margin right-margin line-ht char-ht
tlw end-pt)

(object-name-p string)

(process-explanation-list explanation-list violation-type color-num start-
location left-margin right-margin line-ht char-ht tlw) '

(draw-explanation-text lower-left explanation-list level)

The Design Objects Dialog Box

Files: ac-objs.lsp, globals.lsp, objects.dcl, *.sld — This component contains routines
for displaying an AutoCAD dialog box showing names of design objects and their
corresponding images. A list of names scrolls on the left, and one image is shown
on the right. Whenever the user clicks on an object name, the image of that object
is displayed. The information about objects and their images needs to be stored in
a global variable called *OBJECTS*. The images themselves need to be stored in
individual AutoCAD slide (.sld) files. The main function, get-new-object-type, has
been separated from the rest of ac-shell.lsp and put into a file called ac-objs.lsp.

More generally, this dialog box could be used in any situation in an AutoCAD
application in which a user must select one item out of a list, and each item has a
corresponding image. A sample of the *OBJECTS* global variable is:

(setq *OBJECTS*

Type Dialog text name  Slide Block Shape Size
(

(ac-units-curbed "AC Unit on Curb” "ac-curb” "ac-curb" rectangular-composition 3.0)

(ac-units-sleeps "AC Unit on Sleep” "ac-sleep” "ac-sleep'rectangular-composition 3.0)
(area-dividers  "Area Divider" "areadiv" nil nil nil)
(attic-vents "Attic Vent" "vent" "vent" circle 0.25)

)



54

USACERL TR 97/37

References

Cited

[Brown 1986] D. Brown and B. Chandrasekaren. "Knowledge and control for a mechanical design
expert system". IEEE Computer, 19(7) 92-100.

[East 1995] E.W. East, T.L. Roessler, M.D. Lustig, and M.C.M. Fu. "The Reviewer’s Assistant
System: System Design Analysis and Description”. Technical Report (TR) FF-95/09/
ADA294604, U.S. Army Construction Engineering Research Laboratory, Champaign, IL.

[Fu 1994] M. Fu et al. "Using a goal-based model! of design in an expert critiquing system”. In
Design Cognition and Design Education: Focus on the Role of Experience, EduTech
Symposium, Georgia Institute of Technology, Atlanta, GA, pages 14-19.

[Griffin 1982] C. Griffin. Manual of Built-Up Roof Systems. McGraw-Hill Book Company, New York,
NY.

[NRCA 1985] National Roofing Contractors Association, Chicago. The NRCA Roofing and
Waterproofing Manual, 2nd edition, Chicago, IL.

Uncited

[Baykan 1992] C. Baykan and M. Fox. "Wright: a constraint-based spatial layout system”. In
Artificial Intelligence in Engineering Design, volume 1, chapter 11. Academic Press, Inc.,

New York, NY.

[Cacciabue 1992] P. Cacciabue et al. "A cognitive model in a blackboard architecture: synergism of
Al and psychology”. Reliability Engineering and System Safety, 36:187-197.

[Case 1994] M. Case. "The Discourse Model for Collaborative Engineering Design: A Distributed and
Asynchronous Approach”. PhD thesis, University of Illinois at Urbana-Champaign, Urbana,
IL.

[Clarke 1991] J. Clarke and D. Randall. "An intelligent front-end for computer-aided building
design". Artificial Intelligence in Engineering, 6(1):36-45.

[Echeverry 19911 D. Echeverry. "Factors for Generating Initial Construction Schedules.” TR P-91/54/
ADA243662, U.S. Army Construction Engineering Research Laboratory, September 1991.




USACERL TR 97/37

55

[Fazio 1989] P. Fazio and K. Gowri. "A knowledge-based system for the selection and design of roof
systems". The Journal of CIB Batiment International: Building Research and Practice,
17(5)294-298.

[Fischer 1993] G. Fischer et al. "Embedding critics in design environments". The Knowledge
Engineering Review, 8(4):285-307.

[Marcus 1992] S. Marcus et al. "VT: an expert elevator designer that uses knowledge-based back-
tracking". In Artificial Intelligence in Engineering Design, volume 1, chapter 11. Academic
Press, Inc., New York, NY.

[Mastaglio 1990] T. Mastaglio. "User modeling in computer-based critics". In Proceedings of the 23rd
Hawaii International Conference on System Sciences, Volume 3: Decision Support and

Knowledge-Based Systems, pages 403-411.

[Miller 19861 P. Miller. Expert Critiquing Systems: Practice-Based Medical Consultation by
Computer. Springer, New York, NY.

[Morad 1994] A. Morad and Y. Beliveau. "Geometric-based reasoning system for project planning".
Journal of Computing in Civil Engineering, 8(1):52-69.

[Ohsuga 1989] S. Ohsuga. "Toward intelligent CAD systems. Computer Aided Design, 21(5):315-336.

[Paek 1992] Y. Paek and H. Adeli. "An object space framework for design/construction integration”.
Building and Environment, 10(1):35-48.

[Ramsey 1994] C. Ramsey and H. Sleeper. Architectural Graphic Standards, 9th edition. John Wiley
and Sons Inc., New York, NY.

[Roach 1984] J. Roach. "The rectangle placement language”. In Proceedings of the 21st IEEE Design
Automation Conference, pages 405-411.

[RCI 1994] Roof Consultants Institute’s Glossary of Terms, Roof Consultants Institute, Raleigh, NC.

[Silverman 1992] B. Silverman. Critiquing Human Error: A Knowledge-Based Human-Computer
Collaboration Approach. Academic Press, New York, NY.

[Spickelmier 1988] R. Spickelmier and A. Newton. "CRITIC: a knowledge-based program for
critiquing circuit designs". In Proceedings of the 1988 IEEE International Conference of
Computer Design: VLSI in Computers and Processors, pages 324-3217.

[Steinberg 1984] L. Steinberg and T. Mitchell. "A knowledge-based approach to VLSI CAD: the
REDESIGN system". In Proceedings of the 21st IEEE Design Automation Conference, pages
412-418.



56 USACERL TR 87/37

[Tong 1987] C.Tong. Goal-directed planning of the design process. In Proceedings of the 1987 IEEE
International Conference of Computer Design: VLSI in Computers and Processors, pages 284-289.

[USACE 19921 Roofing Technology: Proponent Sponsored Engineer Corps Training (PROSPECT).
U.S. Army Corps of Engineers and the American Roofing Consultants, Inc., Spencer, NC.

[Zamanian 1992] M. Zamanian et al. "Representing spatial abstractions of constructed facilities".
Building and Environment, 27(2):221-230.

[Zhou 1989] H. Zhou et al. "CLEER: An Al system developed to assist equipment arrangements on
warships”. Naval Engineers Journal, 101(3):12-137.




1

USACERL TR 97/37

57

Appendix A: Files and Locations

Goldworks lll Files

In the gcl44\sedar subdirectory:
cma-fn.Isp
cma-main.lsp
cma-rule.lsp
decomp.lsp
demons.lsp
geometry.lsp
prevdet.lsp
review.lsp
snap.lsp
update.lsp
violate.lsp

In gcl44\sedar\kb subdirectory:
areadiv.lsp
assert.lsp
drains.lsp
equip.lsp
expansio.lsp
frames.lsp
kb.lsp
obj-fn.lsp
obj-rule.lsp
roof.lsp
scuppers.lsp
vents.lsp

AutoCAD Files

In the sedar directory:
Autolisp Files (*.1sp)
ac-expl.lsp
ac-init.lsp



USACERL TR 97/37

ac-shell.lsp
attribs.lsp
globals.lsp
handlers.lsp
init.lsp
setup.lsp
slots.1sp

Drawing Files (*.dwg)
ac-curb.dwg
ac-sleep.dwg
ac-unit.dwg
areadiv.dwg
chim.dwg
chimney.dwg
column.dwg
drain.dwg
exh-fan.dwg
expjoint.dwg
fan.dwg
hatch.dwg
hotstack.dwg
hs.dwg
hvac.dwg
od.dwg
odrain.dwg
parwall.dwg
pv.dwg
pvent.dwg
rd.dwg
rdrain.dwg
rh.dwg
roofhatc.dwg
rv.dwg
rvpipe.dwg
scupper.dwg
sump.dwg
vent.dwg

DCL Files (*.dcl)
attribs.dcl
goals2.dcl
objects.dcl




USACERL TR 97/37

59

slots.del
suggest.dcl
violatns.dcl

Slide Files (*.sld)
1slope.sld
2slope.sld
4slope.sld
ac-curb.sld
ac-sleep.sld
ac-unit.sld
areadiv.sld
chimney.sld
drain.sld
exh-fan.sld
expjoint.sld
fan.sld
hatch.sld
hotstack.sld
hvac.sld
odrain.sld
parwall.sld
pvent.sld
rdrain.sld
rooffoot.sld
roofhatc.sld
rvpipe.sld
scupper.sld
vent.sld
walkway.sld

In the acadwin directory:
acad.mnl
acad.mnu
cadreglb.lsp



60

USACERL TR 97/37

Appendix B:

Expert Critiquing Shell Files

File: cma-main.lsp

Function
Arguments

user::ac-message

query-id msg-string &rest msg-info

convert-from-string
arg
deep-convert-from-string
arg
do-get-object-slots
Ist
do-get-object-slot-values
Ist
do-get-object-slot-values*
object-id slot-list
do-get-object-slot-defaults
Ist
do-get-object-slot-defaults*®
object-id slot-list
do-get-object-children
request lst
inorder-traversal
frame-name
do-get-object-parents
request lst
do-modify-slot-values
Ist
do-modify-slot-values*

object-id slot-value-list

do-get-dtm-all

Function Listings by File




USACERL TR 97/37

do-get-dtm-activations
activation
get-all-dtm-activations

do-get-dtm-task-status

Ist
do-get-dtm-tasks

relation-type task
do-set-dtm-task-activation

Ist
do-get-dtm-task-rules

Ist
do-rule-query

query-type lst
get-rule-info

rule-name
do-rule-activation

activation st
do-set-review-type

Ist
do-set-critique-type

critique-type lst
do-reject-critique

Ist
update-kb

query-id msg-string &optional msg-info
update-tasks

query-id object-type
recently-activated

query-num task
recently-activated*®

query-num task depth
task-update-situation-p

query-num
do-delete-object

msg-info
do-delete-object™

obj
delete-assertions

obj-name
do-review-tasks

msg-string &optional msg-info



62

USACERL TR 97/37

do-select-object
msg-info
remove-nils
Ist
do-place-object
msg-info
do-move-object
msg-info
do-resize-object
msg-info
get-object-descriptions

File: cma-fn.lsp

Function
Arguments

null?

sqr

x
minimum

Ist
maximum

Ist
filter

flst
filter-mapcar

filter-fn map-fn lst

clear-all

n-last
n llist
n-last*

threshold current llist

violation-name

combine

f zero list
count

elt list
count-objects

the-frame big-instance




USACERL TR 97/37

63

set-start-time
print-elapsed-time

detail-list-test

el e2
assert-subtask-list

subtasks parent
check-and-activate-tasklist

tasklist
make-object-instance

msg-info
apply-lisp-functions

arg func-list
legal-object?

object-type
frame-ancestor

ancestor descendant
frame-ordered

task1 task2
frame-ordered*

task1 task2 task1-parents task2-parents
frame-ordered**

task task-list
all-frame-instances

frame

File: decomp.lsp

Function
Arguments

maximum-decomposition

rect-obj
horizontal-decomposition

rect-obj
combine-horizontal-areas

area-list
combine-horizontal-areas™

area-list combined-area-list
combine-area-horizontally

extent extent-list



64

USACERL TR 97/37

vertical-decomposition

rect-obj
combine-vertical-areas

area-list
combine-vertical-areas™

area-list combined-area-list
combine-area-vertically

extent extent-list
filter-out-rectangles

rect-list rect-obj
make-h-slices

extent h-borders
make-h-slices*

h-borders extent current-y
make-v-slices

h-slice-list extent v-borders
make-v-slices*

h-slice-list current-x v-borders
make-v-slices**

h-slice current-x v-borders
subtract-area

start-list subtract-list
subtract-area*

left subtract-list
remove-rectangle

left sub-area
one-corner-extent-overlap

extentl extent2
two-corner-extent-overlap

extentl extent2
one-side-extent-overlap

extentl extent2
two-side-extent-overlap

extentl extent2
num-intersecting-corners

extentl extent2
num-intersecting-corners*

point-list extent
form-complete-overlap-remainder

extentl extent2
form-one-corner-remainder

extentl extent2




USACERL TR 97/37

65

form-two-corner-remainder
extentl extent2

form-one-side-remainder
extentl extent2

form-two-side-remainder
extentl extent2

File: geometry.lsp

Function
Arguments

border-order

el e2
make-vertical-borders

coord-list
make-vertical-borders*

coord-list
make-horizontal-borders

coord-list
make-horizontal-borders*

coord-list
legal-composition

coord-list
legal-composition*

current-coord rest-list
make-extent

coord-list
make-extent*

coord-list min-x min-y max-x max-y
make-coord-info

extent
point-distance

pointl point2
point-in-rect

point rect
point-in-rectl

point v-borders
on-horizontal-border

x-val y-val horizontal-borders
on-vertical-border

x-val y-val vertical-borders



66

USACERL TR 97/37

num-right-crossings

x-val y-val vertical-borders
num-border-crossings

pointl point2 border-list direction
complete-extent-overlap

extentl extent2
no-extent-overlap

extentl extent2
point-in-extent

point extent
point-strictly-in-extent

point extent
complete-overlap

object1 object2
complete-overlap-cc

circlel circle2
complete-overlap-rr

rectl rect2
complete-overlap-rr*

rectl coordlist1 coordlist2 v-borders h-borders
check-all-borders

coordlist1 v-borders h-borders
complete-overlap-rc

rectl circlel
complete-overlap-rc*

coordlist center radius rect
segment-within-distance

endptl endpt2 point distance
segment-within-distance*

ptl pt2 point distance direction
no-overlap

object1 object2
no-overlap-cc

circlel circle2
no-overlap-rr

rectl rect2
no-overlap-rr*

rect1 coordlist1 coordlist2 v-borders h-borders
no-overlap-rc

rectl circlel
no-overlap-rc*

coordlist center radius rect




USACERL TR 97/37

67

next-to-outside

object1 object2
next-to-inside

object1 object2
simple-span-extent

extentl extent2 tolerance
simple-span-rr

rect-obj1 rect-obj2 tolerance
.simple-span-extent

extent1 extent2 tolerance
simple-span-extent-rr

extentl extent2 tolerance
spans-roof

obj roof-obj
spans-roof*

obj extent-list
next-to-cc

circlel circle2
next-to-rc

rect circle
adjacent

object1 object2
adjacent-cc

circle-obj1 circle-obj2
adjacent-rc

rect-obj circ-obj
rect-segments-touch-circle

h-borders v-borders center radius
get-first-coord

border
get-second-coord

border
rect-points-touch-circle

coord-list center radius
adjacent-rr

rect-obj1 rect-obj2
check-colinearity-overlap-segments

bordersl borders2
check-colinearity-overlap-segments®

border border-list
intersection

object1 object2



68

USACERL TR 97/37

adjacent-on-edge

object1 object2 object2-side
intersect-on-edge

object1 object2 object2-side
aligned

object] object2 tolerance
area-of

object
area-of-c

circle
area-of-rc

rect
area-of-rc*

h-borders v-borders left-x right-x area
area-of-rc**

y-coord delta-y right-x v-border-list
pop-border-list

h border-list
pop-border-list*

h last-elt rest-list
filter-heights

h1 h2 v-border-list
traversable

obj1 obj2 path-obj
connected?

obj1 obj2
check-walkway-objects

obj1 obj2 walkway
object-connected

object-list target-obj
connected?*

obj1 obj2 current-walkway
get-relative-distance

object border-list border-type
get-relative-distance-circle

center radius border-list border-type
get-relative-distance-rect

coordinate-info extent border-list border-type

compute-distance
obj1 obj2
compute-distance-cc
circle-obj1 circle-obj2




USACERL TR 97/37

69

compute-distance-rc
rect-obj circle-obj
distance-to-corners
corner-list center radius
distance-to-vert-borders
border-list center radius
distance-to-horiz-borders
border-list center radius
compute-distance-rr
rect-obj1 rect-obj2
rect-comps-dist
rect-compl rect-comp2
rect-comps-dist-aux
rect-compl rect-comp2
rect-comp-point-dist
rect-comp point
draw-point
point
edge-point-dist
point edge
vert-edge-point-dist
point edge
horiz-edge-point-dist
point edge
pointx
point
pointy
point
edgex1
edge
edgeyl
edge
edgex2
edge
edgey2
edge
distance
pointl point2
opposite-orientation
orientation
distance-to-line
point line



70

"USACERL TR 97/37

get-edge

simple-rectangle edge
horizontal?

line
vertical?

line
north-of

rectl rect2
north-of-extent

rect1-extent rect2-extent
south-of

rectl rect2
south-of-extent

rect1-extent rect2-extent
west-of

rectl rect2
west-of-extent

rect1-extent rect2-extent
east-of

rectl rect2
east-of-extent

rect1-extent rect2-extent
determine-alignment

rectl rect2
determine-alignment-extent

rect1-extent rect2-extent
line-distance

linel line2
exceeds-max-distance-p

obj1 obj2 maxd

File: prevdet.lsp

Function
Arguments

build-rule-object-type-list
agent rule-name
first-highest-priority-task
task-list
max-priority
a-task a-priority




USACERL TR 97/37 4!

get-active-rules

agent
get-active-rules-for-object-place

agent
build-rule-task-list

agent rule
check-intersection

list1 list2
make-object-place-ruleset

active-rule-list
make-object-select-ruleset

active-rule-list
make-od-rule

new-rule-name old-rule-name trigger-name object-list bindable-list
make-new-consequent

old-consequent bindings rule-name
make-new-antecedent

old-antecedent bindings
instantiate

s-exp binding-list
instantiate-binding

s-exp binding quote-p
form-binding

object-list bindable-list
form-binding*

object-list prev-bindable-list rest-bindable-list

File: review.lsp

Function
Arguments
make-all-review-rules
agent
make-all-focus-review-rules
agent
make-review-rules-for-task-subtree
agent task
make-review-rules
agent task-list
| activate-rules-by-tasks
i agent task-list



72

USACERL TR 97/37

File: snap.lsp

Function
Arguments

snap-to-fit-circle-point
circ-obj point
snap-one-slope-das
one-slope-das
snap-four-slope-das
four-slope-das
snap-drainage-area
one-slope-das tolerance
equal-extents
extentl extent2
align-adjust-width-rr
snapper snappee
find-nearest-adjacent-edge
obj1 obj2

File: update.lsp

Function
Arguments

update-assert

object-type current-agent
filter-deactivated-tasks

task-list
get-tasks

rule-list current-agent
get-interfering-tasks

task-list current-agent
get-last-tasks

filter-recently-activated
task-assertion-list

File: violate.lsp

Function
Arguments

order-by-tasks




USACERL TR 97/37

73

rule-task-pair-compare
rule-task-pairl rule-task-pair2
task-compare
taskl1 task2
sort-by-priority-reverse
rule-list
order-by-tasks-select

make-violation-action

violation-name rule-name task-name level rule-type var-bindings

violation-action explanation
make-select-violation-action

constraint-area-name obj-type rule-num task level obj-id bindable-list
binding-list explanation violation-action
get-binding

var binding-list
make-explanation

explanation var-bindings
cat-explanation-terms

inst-expl
make-explanation-list

explanation var-bindings
cat-explanation-terms-2

inst-expl
make-object-list

var-bindings
make-object-list

explanation var-bindings
object-variable-p

str
get-object-string-assoc

obj-type binding-list
get-other-object-string-assoc

obj-id binding-list bindable-list
get-var-name

obj-id binding-list
get-other-object-string-assoc*

var-name bindable-list
get-partial-action

var violation-action
get-partial-action*

var action-list



74

USACERL TR 97/37

string-member

sym Ist
atomic-listp

Ist
var-obj-instantiate

var obj-id Ist

Flat and Low-Slope Roof Knowledge Base Files
File: kb.lsp

Function
Arguments

binding-list-match

binding-list1 binding-list2
checked-before-dual

rulenum &rest binding-list
checked-before

rulenum &rest binding-list

File: obj-fn.lsp

Function
Arguments

make-assoc-id
make-penetration-id
make-slice-id

direction
make-wall-segment-id
make-roof-drains-id
make-column-id
make-roof-walls

roof-footprints-id

make-roof-walls™*
roof-footprints-id coord-info width pointl point2 list-length




USACERL TR 97/37

get-bounding-points

ptl pt2 pt3 pt4
classify-corner

ptl pt2 pt3
make-roof-edges

roof-footprints-id
make-expansion-joint-points

roof-footprints-id
make-joint-points*

roof-id area-list direction
make-joint-points-h**

roof-id area area-list
make-joint-points-v**

roof-id area area-list
complete-expansion-joint-slots

joint-obj
clip-or-extend-to-roof

obj roof-obj
clip-or-extend-to-roof*

obj extent-list
clip-or-extend-rc-objects

obj extent
make-footprint-slices

roof-obj
make-footprint-slices™

area-list roof-obj slice-type
test-cricket

low-point edge-point1 edge-point2 obj
make-line

pointl point2
check-corners

line coord-list
which-cricket

four-slope-da obj
make-wall-segments

wall
make-wall-segments*

endpointl endpoint2 endpoint-list half-width wall-id segment-count
assess-spacing

slice distance-interval
assess-spacing™®

slice distance-interval




76

'USACERL TR 97/37

check-distance-intervals

offset-list interval list-length
create-low-point-drain

four-slope-da
make-columns

column-list
do-vertical-column-lines

column-list endptl1 endpt2 height
do-horizontal-column-lines

column-list endptl endpt2 height

User Interface (AutoLisp) Files

File: ac-expl.lsp

Function
Arguments

draw-explanation-box-and-text

object-list explanation-list violation-level | lower-left

lower-left-of-exp-box
object-list
in-middle-third

object-name | shape center radius rc y-maxmin top bottom

in-bottom-third
object-name | shape center radius rc y-min
in-top-third
object-name | shape center radius rc y-max
in-all-3-regions
object-name
draw-explanation-box
the-point
str-to-sym
string
get-first-word
string | whtspc
get-first-word-aux
string
trim-leading-whitespace
string
get-leading-whitespace
string




USACERL TR 97/37 77

all-spaces
string
fits
str-test left-x right-x ht
my-textbox
string height
show-text
string start-location left-margin right-margin line-ht char-ht tlw end-pt /
str-fits
str-test remainder done next-word new-end-pt
object-name-p
string
process-explanation-list
explanation-list violation-type color-num start-location left-margin
right-margin line-ht char-ht tlw | string new-color-num
draw-explanation-text
lower-left explanation-list level
erase-shadow-layer

draw-message-text
string
draw-message-text-at-line
string line-num
draw-message-text-at-location
string start-location
erase-message-window
/ selset
make-message-window-blue

File: ac-init.lsp

Function
Arguments

init-log-file
File: ac-shell.lsp

Function
Arguments

filter
flst



78

"USACERL TR 97/37

position

item the-list
position-aux

item the-list n
violation-types

violations-list | tmp
violation-message

the-string | viol-types
save-roof-layout

save-globals
pathname
open-roof-layout

toggle-influencer-mode
toggle-debiaser-mode
delete-object-callback
resize-object-callback
c:done
change-object-slot-values
move-object-callback

get-object-constraint-layers
object-name
get-object-constraint-layers*®
actions object-name
offset-layers-bounds
layers delta-x delta-y
new-object-callback

get-new-object
/ viol-types
create-new-objects
objects
create-new-object
object




USACERL TR 97/37

add-if-not-null
x
get-new-object-type

object-list-click-callback

hierarchic-stringify

l
hierarchic-stringify*

[ prefix-string
hierarchic-stringify-children

children prefix-string
active-state-string

task
get-active-state

tasks task
on-state-string

task
add-task

task
tasks-callback

[ tasks-orig
activate-task

deactivate-task

turn-task-on

/ old-task new-task
turn-task-off

| old-task new-task
perform-task-activations

perform-task-activations-aux
changes tasks-list-click-callback
mk_list
readlist displist | count item retlist
violations-callback
| true-violations-list
suggestions-callback
| suggestions-list
get-some-violations
violations-list violation-type rule-type




USACERL TR 97/37

get-some-violations
violations-list violation-type
physical-violations-list-click-callback

specification-violations-list-click-callback
preference-violations-list-click-callback
view-violation-callback

shift-coordinates
deltax deltay coords
forget-object-constraints
object
forget-object-constraints-aux
action-layers object
forget-object-constraint
action-layer object
action-depends-on-object
action object
subactions-depend-on-object
subactions object
get-object-shape
obj-type
get-dwg-object-center
object-name
get-dwg-object-radius
object-name
get-dwg-object-entity
object-name
get-dwg-object-type
object-name
get-dwg-object-vertices
object-name
delete-from-dwg-object
object-name
delete-from-dwg-object™®
obj-name obj-list
get-dwg-object-from-entity
ent
get-dwg-object-from-entity*
ent obj-list




USACERBL TR 97/37

81

call-gcl

msg msg-info
stringify

x
perform-review-actions

msg-string msg-info | viol-types
perform-critique-actions

critique | lower-left
get-violation-level

critique
get-rule-type

critique
get-critique-action

critique
get-critique-explanation

critique
get-object-list

critique
get-explanation-list

critique
show-constraints

constraints object-list
draw-constraint-actions

object-list
draw-constraint-action

constraint-action object-list / action layer-name
get-color-from-violation-type

violation-type
create-and-color-constraint-layers

constraints object-list
create-and-color-constraint-layer

constraint object-list
thaw-critique-layers

critique-list
freeze-critique-layers

critique-list
build-critique-layer-list

critique-list
thaw-layers

layer-list
thaw-layers*

layer-list



82

USACERL TR 97/37

freeze-layers
layer-list
freeze-layers*
layer-list
generate-constraint-block
constraints block-name object center
draw-constraint-layers
constraints
build-constraint-block
layers block-name object center
build-constraint-block-filter
layers
draw-layers-bounding-box
layers
find-layers-bounding-box
layers
draw-critique-explanation
critique-explanation
draw-attention-text
text
draw-thinking-text

draw-critique

critique-action object-list
show-critique

critique-action critique
draw-outline

object-name shape
draw-arrow

source-action dest-action object-list
map-shadow-points

points
map-shadow-point

point
find-nearest-point

point points
find-nearest-point-aux

point points nearest second-nearest
draw-shadow-object

object-type location
draw-exterior-circle-constraint

object-name size




USACERL TR 97/37

draw-interior-circle-constraint
object-name size
draw-circle-constraint
object-name hatch
draw-rc-constraint
object-name hatch
draw-exterior-rc-constraint
object-name size
draw-interior-rc-constraint
object-name size
draw-boundary-area
object-name shape boundary-type size
clear-violation

clear-violation-aux
constraint-layers
upto
elt Ist
first
Ist
second
Ist
third
Ist
fourth
Ist
fifth
Ist
sixth
Ist
seventh
Ist
eighth
Ist
ninth
Ist
get-x-maxmin
coord-list
get-x-maxmin*
coord-list maxval minval
get-y-maxmin
coord-list



USACERL TR 97/37

get-y-maxmin*®

coord-list max min
gensym

object-type
draw-rect-comp

rect-comp
draw-rect-comp-aux

rect-comp
draw-outside-rect-comp

rect-comp radius
draw-outside-rect-comp-aux

rect-comp radius direction
draw-right

x y next-direction radius
draw-left

x y next-direction radius
draw-up

x y next-direction radius
draw-down

x y next-direction radius
draw-inside-rect-comp

rect-comp radius
draw-inside-rect-comp-aux

rect-comp radius direction
draw-inside-right

x y next-direction radius
draw-inside-left

x y next-direction radius
draw-inside-up

x y next-direction radius
draw-inside-down

x y next-direction radius

File: globals.lsp

Function
Arguments
id
x




USACERL TR 97/37

85

File: attribs.lsp

Function
Arguments

change-attribs
object-name
stringify-elements
l
stringify-pairs
l
attribs-list-click-callback

File: handlers.lsp

Function
Arguments

get-attic-vents

create-attic-vents
object-info
get-hot-stacks

create-hot-stacks
object-info
get-overflow-drains

create-overflow-drains
object-info
get-roof-drains

create-roof-drains
object-info
get-roof-vent-pipes

create-roof-vent-pipes
object-info
get-fans

create-fans
object-info



86

"USACERL TR 97/37

get-circular-object

radius
create-circular-object

object-info block-filename
get-ac-units-curbed

create-ac-units-curbed
object-info
get-ac-units-sleeps

create-ac-units-sleeps
object-info
get-exhaust-fans

create-exhaust-fans
object-info
get-mech-units

create-mech-units
object-info
get-power-vents

create-power-vents
object-info
get-hatches

create-hatches
object-info
get-masonry-chims

create-masonry-chims
object-info
create-columns
object-info
get-rectangular-object
width height
create-rectangular-object
object-info block-filename
get-walls

create-wall-segments
object-info
get-scuppers




USACERL TR 97/37

87

create-scuppers
object-info
get-walkways

create-walkways
object-info
get-roof-footprints

create-roof-footprints
object-info
get-exp-joints

create-exp-joints
object-info
get-area-dividers

create-area-dividers
object-info
get-column-lines

create-column-lines
object-info
get-four-slope-das

create-four-slope-das
object-info
get-two-slope-das

create-two-slope-das
object-info
get-one-slope-das

create-one-slope-das
object-info
convert-da-to-rc
da

get-rc

get-ortho-pline
prompt
input-pline
layer-name
get-ww



USACERL TR 97/37

normalize-rc

points
make-rc-start-right

points
clean-up-rc

points
clean-up-rc*

points cleaned-points
clean-up-segment

pointl point2
offset

points xoffset yoffset
compute-ww-rc

path radius
get-direction

this-point next-point
compute-ww-side-1

path radius
continue-path-1

path last-direction radius
find-next-ww-point-1

this-x this-y this-direction last-direction radius
compute-ww-side-2

path radius
continue-path-2

path last-direction radius
find-next-ww-point-2

this-x this-y this-direction last-direction radius
make-clockwise

path
is-clockwise

path
is-clockwise*

path total
turn-value

last-direction this-direction
convert-pline-to-rc

layer-name
get-pline-vertices

entity
get-da

drawing-fn
find-max-min




USACERL TR 97/37

89

pin-mouse-point
draw-4slope
draw-2slope
draw-1slope

wrap-re-coords
rect-comp

File: setup.lsp

Function
Arguments

S::STARTUP

File: acad.mnl

Function
Arguments

move-object
new-object
resize-object
delete-object
ai_tiledvp_chk
ai_tiledvp
num ori [ ai_tiles_g ai_tiles_cmde
ai_tabl
| ai_tab2

ai_tab3

| ai_tab4




90

USACERL TR 97/37

*merr*

msg
*merrmsg*

msg
crectang

/ emde ptl pt2
c:ai_peditm

[ mpOm:pl
m:p0

[/ m:s1 m:el m.:e2 m:e3
m:pl

/| m:a
ai_rootmenus




USACERL TR 97/37

91

Appendix C: Rules and Rule Set Listings
by File

Expert Critiquing Shell Files
File: cma-rule.lsp

Rule Set Definitions
Rule Set Rules

clear-cache-information
remove-cache-infol
remove-cache-info2
remove-cache-info3
remove-relation-infol
remove-relation-info2
remove-relation-info3
remove-relation-info4
remove-relation-info5
remove-relation-info6

mark-active-rules
deactivate-active-rules

Rule Definitions

remove-cache-infol
remove-cache-info2
remove-cache-info3
remove-relation-infol
remove-relation-info2
remove-relation-info3
remove-relation-info4
remove-relation-info5
remove-relation-info6
deactivate-active-rules



USACERL TR 97/37

File: demons.lsp

Rule Set Definitions
Rule Set Rules

all-demons
clear-all-shadow-objects1
clear-all-shadow-objects2
clear-all-active-rules
clear-all-temporary-rules
clear-all-temporary-rules-prime
clear-all-violations
clear-all-violations-prime
clear-constraint-rule-set
clear-all-interact-rules
clear-all-interact-rules-prime
clear-task-list
mark-task-list
mark-task-list-prime
unmark-task-list
unmark-task-list-prime
clear-all

Rule Definitions

clear-all-shadow-objectsl
clear-all—shadow-obj ects2
clear-all-active-rules
clear-task-list

clear-all

mark-task-list
mark-task-list-prime
unmark-task-list
unmark-task-list-prime
clear-all-temporary-rules
clear-all-temporary-rules
clear-all-violations
clear-all-violations-prime
clear-constraint-rule-set
clear-all-interact-rules
clear-all-interact-rules-prime




USACERL TR 97/37

93

File: update.lsp

Rule Set Definitions
Rule Set Rules

update-tasks-frame
update-tasks-framel
update-tasks-frame2

update-tasks-copy
update-tasks-copyl
update-tasks-copy2

Rule Definitions

update-tasks-framel
update-tasks-frame2
update-tasks-copy1l
update-tasks-copy2

Flat and Low-Slope Roof Knowledge Base Files
File: areadiv.lsp
Rule Definitions

ruleF-1-trigger
ruleF-1-condition
ruleF-2-a-trigger
ruleF-2-a-condition
ruleF-2-b-trigger
ruleF-2-b-condition
ruleF-2-c-trigger
ruleF-2-c-condition
ruleF-3-trigger
ruleF-3-condition
ruleF-1-1-2-trigger
ruleF-1-1-2-condition
ruleF-1-3-1-a-1-trigger
ruleF-1-3-1-a-1-condition
ruleF-1-3-1-a-2-trigger
ruleF-1-3-1-a-2-condition
ruleF-1-3-1-b-trigger



94

USACERL TR 97/37

ruleF-1-3-1-b-condition
ruleF-1-3-1-c-trigger
ruleF-1-3-1-c-condition

File: drains.Isp

Rule Definitions

rulel-trigger
rulel-condition
rule2-trigger
rule2-condition
rule3-trigger
rule3-condition
rule4-trigger
rule4-condition
rulel7-trigger
rulel7-condition
rule22-trigger
rule22-condition
ruleO-4-trigger
ruleO-4-condition
ruleO-5-trigger
ruleO-5-condition
ruleO-6-trigger
ruleO-6-condition
ruleO-7-trigger
ruleO-7-condition
ruleO-8-trigger
ruleO-8-condition
ruleO-10-a-trigger
ruleO-10-a-condition
ruleO-10-b-trigger
ruleO-10-b-condition
ruleO-14-trigger
ruleO-14-condition
ruleO-15-trigger
ruleO-15-condition
ruleO-16-trigger
ruleO-16-condition
ruleO-17-trigger
ruleO-17-condition
ruleO-18-trigger




USACERL TR 97/37

95

ruleO-18-condition
ruleO-19-a-trigger
ruleO-19-a-condition
ruleO-19-b-trigger
ruleO-19-b-condition
ruleO-19-c-trigger
ruleO-19-c-condition
ruleO-19-d-trigger
rule0-19-d-condition
ruleO-20-trigger
ruleO-20-condition
rule0-22-trigger
rule0-22-condition
ruleO-23-trigger
ruleO-23-condition
ruleO-24-trigger
ruleO-24-condition
ruleO-25-a-trigger
ruleO-25-a-condition
ruleO-25-b-trigger
ruleO-25-b-condition
ruleO-26-a-trigger
ruleO-26-a-condition
rule0-26-b-trigger
rule0-26-b-condition
ruleO-26-c-trigger
rule0-26-c-condition
rule5-trigger
rule5-condition
rule9-trigger
rule9-condition

File: equip.lsp
Rule Definitions

rule6-trigger
rule6-condition
rule7-trigger
rule7-condition
rule8-trigger
rule8-condition
rulel2-trigger



96

USACERL TR 97/37

rule12-condition
rulel3-trigger
rulel3-condition
rulel4-trigger
rulel4-condition
rulel5-trigger
rulel5-condition
rulel8-trigger
rule18-condition
rule19-trigger
rulel9-condition
rule20-trigger
rule20-condition
rule21-trigger
rule21-condition
rule23-trigger
rule23-condition

File: expansio.lsp
Rule Definitions

ruleE-1-trigger
ruleE-1-condition
ruleE-2-a-trigger
ruleE-2-a-condition
ruleE-2-b-trigger
ruleE-2-b-condition
ruleE-2-c-trigger
ruleE-2-c-condition
ruleE-3-trigger
ruleE-3-condition
ruleE-1-1-1-a-trigger

ruleE-1-1-1-a-condition

ruleE-1-1-1-b-trigger

ruleE-1-1-1-b-condition

ruleE-1-1-1-c-trigger

ruleE-1-1-1-c-condition

ruleE-1-1-1-d-trigger

ruleE-1-1-1-d-condition

ruleE-1-1-1-e-trigger

ruleE-1-1-1-e-condition

ruleE-1-1-2-trigger




USACERL TR 97/37

97

ruleE-1-1-2-condition
ruleE-1-3-1-a-1-trigger
ruleE-1-3-1-a-1-condition
ruleE-1-3-1-a-2-trigger
ruleE-1-3-1-a-2-condition
ruleE-1-3-1-b-trigger
ruleE-1-3-1-b-condition
ruleE-1-3-1-c-trigger
ruleE-1-3-1-c-condition

File: kb.lsp

Rule Set Definitions
Rule Set Rules

constraint-rules

rulel-trigger
rulel-condition
rule2-trigger
rule2-condition
rule3-trigger
rule3-condition
ruled-trigger
rule4-condition
rule5-trigger
rule5-condition
rule6-trigger
rule6-condition
rule7-trigger
rule7-condition
rule8-trigger
rule8-condition
rule9-trigger
rule9-condition
rulell-trigger
rulell-condition
rulel2-trigger
rulel12-condition
rulel3-trigger
rulel3-condition
rulel4-trigger
rulel4-condition



98

USACERL TR 97/37

rulel5-trigger
rulel5-condition
rulel6-trigger
rulel6-condition
rulel7-trigger
rulel7-condition
rulel8-trigger
rulel8-condition
rulel9-trigger
rule19-condition
ruleH111a-trigger
ruleH111a-condition
ruleH111b-trigger
ruleH111b-condition
ruleH121-trigger
ruleH121-condition
ruleK221-trigger
ruleK221-condition
ruleK222-trigger
ruleK222-condition
ruleK223-trigger
ruleK223-condition
ruleK224-trigger
ruleK224-condition
ruleO-6-trigger
ruleO-6-condition
ruleO-7-trigger
ruleO-7-condition
ruleO-8-trigger
ruleO-8-condition
ruleO-10-a-trigger
ruleO-10-a-condition
ruleO-10-b-trigger
ruleO-10-b-condition
ruleO-14-trigger
ruleO-14-condition
ruleO-15-trigger
ruleO-15-condition
ruleO-16-trigger
ruleO-16-condition
ruleO-17-trigger
ruleO-17-condition
ruleO-18-trigger




USACERL TR 97/37

ruleO-18-condition
ruleO-19-a-trigger
ruleO-19-a-condition
ruleO-19-b-trigger
ruleO-19-b-condition
ruleO-19-c-trigger
ruleO-19-c-condition
ruleO-19-d-trigger
rule0-19-d-condition
ruleO-20-trigger
ruleO-20-condition
ruleO-22-trigger
rule0-22-condition
ruleO-23-trigger
ruleO-23-condition
ruleO-24-trigger
ruleO-24-condition
ruleO-25-a-trigger
ruleO-25-a-condition
ruleQ-25-b-trigger
ruleO-25-b-condition
ruleO-26-a-trigger
ruleO-26-a-condition
ruleO-26-b-trigger
ruleO-26-b-condition
ruleO-26-c-trigger
ruleO-26-c-condition
ruleE-1-trigger
ruleE-1-condition
ruleE-2-a-trigger
ruleE-2-a-condition
ruleE-2-b-trigger
ruleE-2-b-condition
ruleE-2-c-trigger
ruleE-2-c-condition
ruleE-3-trigger
ruleE-3-condition
ruleE-1-1-1-a-trigger
ruleE-1-1-1-a-condition
ruleE-1-1-1-b-trigger
ruleE-1-1-1-b-condition
ruleE-1-1-1-c-trigger
ruleE-1-1-1-c-condition




100

USACERL TR 97/37

ruleE-1-1-1-d-trigger
ruleE-1-1-1-d-condition
ruleE-1-1-1-e-trigger
ruleE-1-1-1-e-condition
ruleE-1-1-2-trigger
ruleE-1-1-2-condition
ruleE-1-3-1-a-1-trigger
ruleE-1-3-1-a-1-condition
ruleE-1-3-1-a-2-trigger
ruleE-1-3-1-a-2-condition
ruleE-1-3-1-b-trigger
ruleE-1-3-1-b-condition
ruleE-1-3-1-c-trigger
ruleE-1-3-1-c-condition
ruleV-1-trigger
ruleV-1-condition
ruleV-2-trigger
ruleV-2-condition
ruleV-3-trigger
ruleV-3-condition
ruleV-4-trigger
ruleV-4-condition
ruleV-5-trigger
ruleV-5-condition
ruleV-6-trigger
ruleV-6-condition
ruleV-7-trigger
ruleV-7-condition
ruleV-8-trigger
ruleV-8-condition
ruleV-9-trigger
ruleV-9-condition
ruleV-10-trigger
ruleV-10-condition
ruleV-11-trigger
ruleV-11-condition
ruleV-12-trigger
ruleV-12-condition
ruleV-13-trigger
ruleV-13-condition
ruleV-14-trigger
ruleV-14-condition
ruleV-15-trigger




USACERL TR 97/37

101

ruleV-15-condition
ruleV-17-trigger
ruleV-17-condition
rulel-1-5-13-trigger
rulel-1-5-13-condition
rulel-1-5-16-trigger
rulel-1-5-16-condition
ruleR-2-a-trigger
ruleR-2-a-condition
ruleR-2-b-trigger
ruleR-2-b-condition
ruleR-3-trigger
ruleR-3-condition
ruleF-1-trigger
ruleF-1-condition
ruleF-2-a-trigger
ruleF-2-a-condition
ruleF-2-b-trigger
ruleF-2-b-condition
ruleF-2-c-trigger
ruleF-2-c-condition
ruleF-3-trigger
ruleF-3-condition
ruleF-1-1-2-trigger
ruleF-1-1-2-condition
ruleF-1-3-1-a-1-trigger
ruleF-1-3-1-a-1-condition
ruleF-1-3-1-a-2-trigger
ruleF-1-3-1-a-2-condition
ruleF-1-3-1-b-trigger
ruleF-1-3-1-b-condition
ruleF-1-3-1-c-trigger
ruleF-1-3-1-c-condition
rule20-trigger
rule20-condition
rule21-trigger
rule21-condition
ruleO-4-trigger
ruleO-4-condition
ruleO-5-trigger
ruleO-5-condition
ruleV-16-a-trigger
ruleV-16-a-condition




102

USACERL TR 97/37

ruleV-16-b-trigger
ruleV-16-b-condition
ruleN-1-trigger
ruleN-1-condition
ruleN-2-trigger
ruleN-2-condition
rule22-trigger

rule22-condition

rule23-trigger

rule23-condition

remove-duals
remove-duplicates1
remove-duplicates2
perform-subsumption-physicall
perform-subsumption-physical2
perform-subsumption-specification
perform-subsumption-or-rulesl
perform-subsumption-or-rules2
cache-failed-check-conditions

Rule Definitions

ruleH111a-trigger
ruleH111a-condition
ruleH111b-trigger
ruleH111b-condition
ruleH121-trigger
ruleH121-condition
ruleK221-trigger
ruleK221-condition
ruleK222-trigger
ruleK222-condition
ruleK223-trigger
ruleK223-condition
ruleK224-trigger
ruleK224-condition
remove-duals
remove-duplicates1
remove-duplicates2
perform-subsumption-physicall
perform-subsumption-physical2
perform-subsumption-specification
perform-subsumption-or-rulesl




USACERL TR 97/37

103

perform-subsumption-or-rules2
cache-failed-check-conditions

File: obj-rule.lsp

Rule Set Definitions
Rule Set Rules

drain-rules
form-penetration-assertionl
add-to-drain-numberl
add-to-drain-number2
assert-drainage-area-drain-overlap
form-roof-overflow-drain-assocl
scupper-drain-assoc2

overflow-drain-rules
form-roof-overflow-drain-assoc2

vent-shaft-rules
form-penetration-assertionl

sump-rules
associate-drain-object

expansion-joint-ruleset
clip-to-roof-footprints
cover-structural-exp-joints

area-divider-ruleset
clip-to-roof-footprints

structural-ruleset
find-support-for-beams
find-center-for-columns
find-support-for-joistsl
find-support-for-joists2
find-end-points-for-joists1
find-end-points-for-joists2

roof-footprints-ruleset
initialize-drain-number
initialize-roof-drainage-coverage-area



104

USACERL TR 97/37

form-penetration-assertion2
form-penetration-assertion3

two-slope-das-ruleset
assert-complete-overlap-for-drainage-areasl
form-equipment-da-assertionsl

one-slope-das-ruleset
subtract-drainage-area-from-roof-coveragel
subtract-drainage-area-from-roof-coverage2
assert-complete-overlap-for-drainage-areas2
assert-drainage-area-drain-overlap

four-slope-das-ruleset
subtract-drainage-area-from-roof-coveragel
subtract-drainage-area-from-roof-coverage2
assert-drainage-area-drain-overlap

walkway-rules
form-close-to-walkway-assertions2
form-adjacent-walkway-assertions

equipment-rules
form-equipment-da-assertions2
form-close-to-walkway-assertions1

scupper-ruleset
make-scupper-drain-assocl

delete-roof-footprints-ruleset
delete-assoc-footprint-slices
delete-assoc-edges
delete-assoc-wall-segments

delete-roof-footprint-slices-ruleset

delete-roof-edge-ruleset

delete-wall-segment-ruleset
delete-wall-assocl

delete-wall-assoc2
delete-wall-assoc3




USACERL TR 97/37

105

deleted-column-line-ruleset
delete-col-line

Rule Definitions

delete-col-line

make-scupper-drain-assocl
make-scupper-drain-assoc2
delete-wall-assocl

delete-wall-assoc2

delete-wall-assoc3
delete-assoc-footprint-slices
delete-assoc-edges
delete-assoc-wall-segments
form-equipment-da-assertionsl
form-equipment-da-assertions2
form-close-to-walkway-assertions1
form-close-to-walkway-assertions2
form-adjacent-walkway-assertions
find-center-for-columns
find-end-points-for-joists1
find-end-points-for-joists2
find-support-for-beams
find-support-for-joists1
find-support-for-joists2
form-penetration-assertionl
form-penetration-assertion2
form-penetration-assertion3
associate-drain-object
assert-complete-overlap-for-drainage-areasl
assert-complete-overlap-for-drainage-areas2
assert-drainage-area-drain-overlap
initialize-roof-drainage-coverage-area
subtract-drainage-area-from-roof-coveragel
subtract-drainage-area-from-roof-coverage2
initialize-drain-number
add-to-drain-numberl
add-to-drain-number2
clip-to-roof-footprints
cover-structural-exp-joints
form-roof-overflow-drain-assocl
form-roof-overflow-drain-assoc2



106

USACERL TR 97/37

File: roof.lsp
Rule Definitions

ruleR-2-a-trigger
ruleR-2-a-condition
ruleR-2-b-trigger
ruleR-2-b-condition
ruleR-3-trigger
ruleR-3-condition

File: scuppers.lsp

ruleN-1-trigger
ruleN-1-condition
ruleN-2-trigger
ruleN-2-condition

File: vents.lsp

rulel6-trigger
rulel6-condition
rulell-trigger
rulell-condition
ruleV-1-trigger
ruleV-1-condition
ruleV-2-trigger
ruleV-2-condition
ruleV-3-trigger
ruleV-3-condition
ruleV-4-trigger

“ruleV-4-condition

ruleV-5-trigger
ruleV-5-condition
ruleV-6-trigger
ruleV-6-condition
ruleV-7-trigger
ruleV-7-condition
ruleV-8-trigger
ruleV-8-condition
ruleV-9-trigger
ruleV-9-condition
ruleV-10-trigger




USACERL TR 97/37

107

ruleV-10-condition
ruleV-11-trigger
ruleV-11-condition
ruleV-12-trigger
ruleV-12-condition
ruleV-13-trigger
ruleV-13-condition
ruleV-14-trigger
ruleV-14-condition
ruleV-15-trigger
ruleV-15-condition
ruleV-16-a-trigger
ruleV-16-a-condition
ruleV-16-b-trigger
ruleV-16-b-condition
ruleV-17-trigger
ruleV-17-condition
rulel-1-5-13-trigger
rulel-1-5-13-condition
rulel-1-5-16-trigger
rulel-1-5-16-condition



108

USACERL TR 97/37

Appendix D: Alphabetical Listing of

Function Name

activate-rules-by-tasks

adjacent
adjacent-cc
adjacent-on-edge
adjacent-rc
adjacent-rr
align-adjust-width-rr
aligned
all-frame-instances
apply-lisp-functions
area-of

area-of-c

area-of-rc
area-of-rc*
area-of-rc**
assert-subtask-list
assess-spacing
assess-spacing*®
atomic-listp

binding-list-match
border-order
build-rule-object-type-list
build-rule-task-list

cat-explanation-terms
cat-explanation-terms-2
check-all-borders

Goldworks lll Lisp Functions

File Name

review.lsp
geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
snap.lsp
geometry.lsp
cma-fn.lsp
cma-fn.Isp
geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
cma-fn.lsp
obj-fn.lsp
obj-fn.lsp
violate.lsp

kb.lsp
geometry.lsp
prevdet.lsp
prevdet.lsp

violate.lsp
violate.lsp
geometry.lsp




USACERL TR 97/37

109

check-and-activate-tasklist

check-colinearity-overlap-segments
check-colinearity-overlap-segments*

check-corners
check-distance-intervals
check-intersection
check-walkway-objects
checked-before
checked-before-dual
classify-corner

clear-all
clip-or-extend-rc-objects
clip-or-extend-to-roof
clip-or-extend-to-roof*
combine
combine-area-horizontally
combine-area-vertically
combine-horizontal-areas
combine-horizontal-areas*
combine-vertical-areas
combine-vertical-areas*

complete-expansion-joint-slots

complete-extent-overlap
complete-overlap
complete-overlap-cc
complete-overlap-rc
complete-overlap-rc*
complete-overlap-rr
complete-overlap-rr*
compute-distance
compute-distance-cc
compute-distance-rc
compute-distance-rr
connected?
connected?*
convert-from-string
count

count-objects
create-low-point-drain

cma-fn.lsp
geometry.lsp
geometry.lsp
obj-fn.lsp
obj-fn.lsp
prevdet.lsp
geometry.lsp
kb.Isp

kb.lsp
obj-fn.lsp
cma-fn.lsp
obj-fn.lsp
obj-fn.lsp
obj-fn.lsp
cma-fn.lsp
decomp.lsp
decomp.lsp
decomp.lsp
decomp.lsp
decomp.lsp
decomp.lsp
obj-fn.lsp
geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
cma-main.lsp
cma-fn.lsp
cma-fn.lsp
obj-fn.lsp



110

deep-convert-from-string
delete-assertions
detail-list-test
determine-alignment
determine-alignment-extent
distance
distance-to-corners
distance-to-horiz-borders
distance-to-line
distance-to-vert-borders
do-delete-object
do-delete-object™
do-get-dtm-activations
do-get-dtm-all
do-get-dtm-task-rules
do-get-dtm-task-status
do-get-dtm-tasks
do-get-object-children
do-get-object-parents
do-get-object-slot-defaults
do-get-object-slot-defaults*
do-get-object-slot-values
do-get-object-slot-values*
do-get-object-slots
do-horizontal-column-lines
do-modify-slot-values
do-modify-slot-values™
do-move-object
do-place-object
do-reject-critique
do-resize-object
do-review-tasks
do-rule-activation
do-rule-query
do-select-object
do-set-critique-type
do-set-dtm-task-activation
do-set-review-type
do-vertical-column-lines

cma-main.lsp
cma-main.lsp
cma-fn.lsp
geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
cma-main.lsp
cma-main.lsp
cma-main.lsp
cma-main.lsp
cma-main.lsp
cma-main.lsp
cma-main.lsp
cma-main.lsp
cma-main.lsp
cma-main.lsp
cma-main.lsp
cma-main.lsp
cma-main.lsp
cma-main.lsp
obj-fn.lsp
cma-main.lsp
cma-main.lsp
cma-main.lsp
cma-main.Isp
cma-main.lsp
cma-main.lsp
cma-main.lsp
cma-main.lsp
cma-main.lsp
cma-main.lsp
cma-main.lsp
cma-main.Isp
cma-main.lsp
obj-fn.lsp

USACERL TR 97/37



USACERL TR 97/37

111

draw-point

E east-of

east-of-extent
edge-point-dist

edgex1

edgex2

edgeyl

edgey?2

equal-extents
exceeds-max-distance-p

F filter
filter-deactivated-tasks
filter-heights
filter-mapcar
filter-out-rectangles
filter-recently-activated
find-nearest-adjacent-edge
first-highest-priority-task
form-binding
form-binding*
form-complete-overlap-remainder
form-one-corner-remainder
form-one-side-remainder
form-two-corner-remainder
form-two-side-remainder
frame-ancestor
frame-ordered
frame-ordered*
frame-ordered**

G get-active-rules
get-active-rules-for-object-place
get-all-dtm-activations
get-binding
get-bounding-points
get-edge

geometry.lsp

geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
snap.lsp

geometry.lsp

cma-fn.lsp
update.lsp
geometry.lsp
cma-fn.lsp
decomp.lsp
update.lsp
snap.lsp
prevdet.lsp
prevdet.lsp
prevdet.lsp
decomp.lsp
decomp.lsp
decomp.lsp
decomp.lsp
decomp.lsp
cma-fn.lsp
cma-fn.lsp
cma-fn.lsp
cma-fn.lsp

prevdet.lsp
prevdet.lsp
cma-main.lsp
violate.lsp
obj-fn.lsp
geometry.lsp




USACERL TR 97/37

112
get-first-coord geometry.lsp
get-interfering-tasks update.lsp
get-last-tasks update.lsp
get-object-descriptions cma-main.Isp
get-object-string-assoc violate.lsp
get-other-object-string-assoc violate.lsp
get-other-object-string-assoc* violate.lsp
get-partial-action violate.lsp
get-partial-action™® violate.lsp
get-relative-distance geometry.lsp
get-relative-distance-circle geometry.lsp
get-relative-distance-rect geometry.lsp
get-rule-info cma-main.lsp
get-second-coord geometry.Isp
get-tasks update.lsp
get-var-name violate.lsp

H  horiz-edge-point-dist geometry.lsp
horizontal-decomposition decomp.lsp
horizontal? geometry.lsp

) | inorder-traversal cma-main.lsp
instantiate prevdet.lsp
instantiate-binding prevdet.lsp
intersect-on-edge geometry.lsp
intersection geometry.lsp

J

K

L legal-composition geometry.lsp
legal-composition* geometry.lsp
legal-object? cma-fn.Isp
line-distance geometry.lsp

M make-all-focus-review-rules review.Isp
make-all-review-rules review.lsp

make-assoc-id

obj-fn.Isp




USACERL TR 97/37

113

make-column-id
make-columns
make-coord-info
make-expansion-joint-points
make-explanation
make-explanation-list
make-extent
make-extent*
make-footprint-slices
make-footprint-slices™
make-h-slices
make-h-slices™*
make-horizontal-borders
make-horizontal-borders*
make-joint-points*
make-joint-points-h**
make-joint-points-v**
make-line
make-new-antecedent
make-new-consequent
make-object-instance
make-object-list
make-object-list
make-object-place-ruleset
make-object-select-ruleset
make-od-rule
make-penetration-id
make-review-rules
make-review-rules-for-task-subtree
make-roof-drains-id
make-roof-edges
make-roof-walls
make-roof-walls*
make-select-violation-action
make-slice-id
make-v-slices
make-v-slices™
make-v-slices™*
make-vertical-borders

obj-fn.lsp
obj-fn.lsp
geometry.lsp
obj-fn.lsp
violate.lsp
violate.lsp
geometry.lsp
geometry.lsp
obj-fn.lsp
obj-fn.lsp
decomp.lsp
decomp.lsp
geometry.lsp
geometry.lsp
obj-fn.lsp
obj-fn.lsp
obj-fn.lsp
obj-fn.lsp
prevdet.lsp
prevdet.lsp
cma-fn.lsp
violate.lsp
violate.lsp
prevdet.lsp
prevdet.lsp
prevdet.lsp
obj-fn.lsp
review.lsp
review.lsp
obj-fn.lsp
obj-fn.lsp
obj-fn.Isp
obj-fn.lsp
violate.lsp
obj-fn.lsp
decomp.lsp
decomp.lsp
decomp.lsp
geometry.lsp



114

make-vertical-borders*
make-violation-action
make-wall-segment-id
make-wall-segments
make-wall-segments*
max-priority

maximum
maximum-decomposition
minimum

n-last

n-last*®

next-to-cc

next-to-inside
next-to-outside

next-to-rc
no-extent-overlap
no-overlap

no-overlap-cc
no-overlap-rc
no-overlap-rc*
no-overlap-rr
no-overlap-rr*

north-of

north-of-extent

null?
num-border-cross'ings
num-intersecting-corners
num-intersecting-corners*
num-right-crossings

object-connected
object-variable-p
on-horizontal-border
on-vertical-border
one-corner-extent-overlap
one-side-extent-overlap
opposite-orientation
order-by-tasks

geometry.lsp
violate.lsp
obj-fn.Isp
obj-fn.lsp
obj-fn.lsp
prevdet.lsp
cma-fn.Isp
decomp.lsp
cma-fn.lsp

cma-fn.lsp

cma-fn.lsp

geometry.lsp
geometry.lsp
geometry.lsp
geometry.Isp
geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
cma-fn.lsp

geometry.lsp
decomp.lsp

decomp.lsp

geometry.lsp

geometry.lsp
violate.lsp
geometry.lsp
geometry.lsp
decomp.lsp
decomp.lsp
geometry.lsp
violate.lsp

USACERL TR 97/37



USACERL TR 97/37

115

order-by-tasks-select

P point-distance
point-in-extent
point-in-rect
point-in-rect1
point-strictly-in-extent
pointx
pointy
pop-border-list
pop-border-list*
print-elapsed-time

R recently-activated
recently-activated*®
rect-comp-point-dist
rect-comps-dist
rect-comps-dist-aux
rect-points-touch-circle
rect-segments-touch-circle
remove-nils
remove-rectangle
rule-task-pair-compare

S segment-within-distance
segment-within-distance*
set-start-time

* simple-span-extent
simple-span-extent
simple-span-extent-rr
simple-span-rr
snap-drainage-area
snap-four-slope-das
snap-one-slope-das
snap-to-fit-circle-point
sort-by-priority-reverse

violate.lsp

geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
cma-fn.lsp

cma-main.lsp
cma-main.lsp
geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
cma-main.lsp
decomp.lsp
violate.lsp

geometry.lsp
geometry.lsp
cma-fn.lsp
geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
snap.lsp
snap.lsp
snap.lsp
snap.lsp
violate.lsp




116

USACERL TR 97/37

SIGRY

south-of
south-of-extent
spans-roof
spans-roof*

sqr
string-member
subtract-area
subtract-area*

task-compare
task-update-situation-p
test-cricket

traversable
two-corner-extent-overlap
two-side-extent-overlap

update-assert
update-kb
update-tasks
user::ac-message

var-obj-instantiate
vert-edge-point-dist
vertical-decomposition
vertical? '
violation-name

west-of
west-of-extent
which-cricket

geometry.lsp
geometry.lsp
geometry.lsp
geometry.lsp
cma-fn.lsp
violate.lsp
decomp.lsp
decomp.lsp

violate.lsp
cma-main.lsp
obj-fn.lsp
geometry.lsp
decomp.lsp
decomp.lsp

update.lsp

cma-main.lsp
cma-main.Isp
cma-main.lsp

violate.lsp
geometry.lsp
decomp.lsp
geometry.lsp
cma-fn.lsp

geometry.lsp
geometry.lsp
obj-fn.lsp




USACERL TR 97/37

117

Function

action-depends-on-object
activate-task
active-state-string
add-if-not-null

add-task

all-spaces
attribs-list-click-callback

build-constraint-block
build-constraint-block-filter
build-critique-layer-list

c:done

call-gcl
change-attribs
change-object-slot-values
change-slots
change-slots™
clean-up-rc
clean-up-rc*
clean-up-segment
clear-violation
clear-violation-aux
compute-ww-rc
compute-ww-side-1
compute-ww-side-2
continue-path-1
continue-path-2

Appendix E: Alphabetical Listing of Autolisp
Functions

File

ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-expl.lsp
attribs.Isp

ac-shell.lsp
ac-shell.lsp
ac-shell.lsp

ac-shell.lsp
ac-shell.lsp
attribs.lsp
ac-shell.lsp
slots.Isp
slots.lsp
handlers.lsp
handlers.lsp
handlers.lsp
ac-shell.lsp
ac-shell.lsp
handlers.lsp
handlers.lsp
handlers.lsp
handlers.lsp
handlers.lsp



118

_USACERL TR 97/37

convert-da-to-rc
convert-pline-to-rc
create-ac-units-curbed
create-ac-units-sleeps
create-and-color-constraint-layer
create-and-color-constraint-layers
create-area-dividers
create-attic-vents
create-circular-object
create-column-lines
create-columns
create-exhaust-fans
create-exp-joints
create-fans
create-four-slope-das
create-hatches
create-hot-stacks
create-masonry-chims
create-mech-units
create-new-object
create-new-objects
create-one-slope-das
create-overflow-drains
create-power-vents
create-rectangular-object
create-roof-drains
create-roof-footprints
create-roof-vent-pipes
create-scuppers
create-two-slope-das
create-walkways
create-wall-segments

deactivate-task
delete-from-dwg-object
delete-from-dwg-object*
delete-object
delete-object-callback
draw-1slope

handlers.lsp
handlers.lsp
handlers.lsp
handlers.lsp
ac-shell.lsp

ac-shell.lsp

handlers.lsp
handlers.lsp
handlers.lsp
handlers.lsp
handlers.lsp
handlers.lsp
handlers.Isp
handlers.lsp
handlers.lsp
handlers.lsp
handlers.lsp
handlers.lsp
handlers.lsp
ac-shell.lsp

ac-shell.lsp

handlers.Isp
handlers.lsp
handlers.lsp
handlers.lsp
handlers.lsp
handlers.lsp
handlers.lsp
handlers.lsp
handlers.lsp
handlers.lsp
handlers.lsp

ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
acad.mnl
ac-shell.lsp
handlers.lsp




USACERL TR 97/37 119

draw-2slope handlers.lsp
draw-4slope handlers.lsp

draw-arrow
draw-attention-text
draw-boundary-area
draw-circle-constraint
draw-constraint-action
draw-constraint-actions
draw-constraint-layers
draw-critique
draw-critique-explanation
draw-down
draw-explanation-box
draw-explanation-box-and-text
draw-explanation-text
draw-exterior-circle-constraint
draw-exterior-rc-constraint
draw-inside-down
draw-inside-left
draw-inside-rect-comp
draw-inside-rect-comp-aux
draw-inside-right
draw-inside-up
draw-interior-circle-constraint
draw-interior-rc-constraint
draw-layers-bounding-box
draw-left

draw-message-text
draw-message-text-at-line
draw-message-text-at-location
draw-outline
draw-outside-rect-comp
draw-outside-rect-comp-aux
draw-rc-constraint
draw-rect-comp
draw-rect-comp-aux
draw-right
draw-shadow-object
draw-thinking-text

ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-expl.lsp
ac-expl.lsp
ac-expl.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-expl.lsp
ac-expl.lsp
ac-expl.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp



120

USACERL TR 97/37

draw-up

eighth
erase-message-window
erase-shadow-layer

fifth

filter
find-layers-bounding-box
find-max-min
find-nearest-point
find-nearest-point-aux
find-next-ww-point-1
find-next-ww-point-2
first

fits
forget-object-constraint
forget-object-constraints
forget-object-constraints-aux
fourth
freeze-critique-layers
freeze-layers
freeze-layers*®

generate-constraint-block
gensym

get-active-state
get-ac-units-curbed
get-ac-units-sleeps
get-area-dividers
get-attic-vents
get-circular-object
get-color-from-violation-type
get-column-lines
get-critique-action
get-critique-explanation
get-da

get-direction

ac-shell.lsp

ac-shell.lsp
ac-expl.lsp
ac-expl.lsp

ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
handlers.lsp
ac-shell.lsp
ac-shell.lsp
handlers.lsp
handlers.lsp
ac-shell.lsp
ac-expl.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp

ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
handlers.lsp
handlers.lsp
handlers.lsp
handlers.lsp
handlers.lsp
ac-shell.lsp
handlers.lsp
ac-shell.lsp
ac-shell.lsp
handlers.lsp
handlers.lsp




USACERL TR 97/37

121

get-dwg-object-center
get-dwg-object-entity
get-dwg-object-from-entity
get-dwg-object-from-entity™*
get-dwg-object-radius
get-dwg-object-type
get-dwg-object-vertices
get-exhaust-fans
get-exp-joints
get-explanation-list
get-fans

get-first-word
get-first-word-aux
get-four-slope-das
get-hatches

get-hot-stacks
get-leading-whitespace
get-masonry-chims
get-mech-units
get-new-object
get-new-object-type
get-object-constraint-layers
get-object-constraint-layers™
get-object-list
get-object-shape
get-one-slope-das
get-ortho-pline
get-overflow-drains
get-pline-vertices
get-power-vents

get-rc
get-rectangular-object
get-roof-drains
get-roof-footprints
get-roof-vent-pipes
get-rule-type

get-scuppers
get-some-violations
get-some-violations

ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
handlers.lsp
handlers.lsp
ac-shell.lsp
handlers.lsp
ac-expl.lsp
ac-expl.lsp
handlers.lsp
handlers.lsp
handlers.lsp
ac-expl.lsp
handlers.lsp
handlers.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
handlers.lsp
handlers.lsp
handlers.lsp
handlers.lsp
handlers.lsp
handlers.lsp
handlers.lsp
handlers.lsp
handlers.lsp
handlers.lsp
ac-shell.lsp
handlers.lsp
ac-shell.lsp
ac-shell.lsp



USACERL TR 97/37

122

get-two-slope-das handlers.lsp
get-violation-level ac-shell.lsp
get-walkways handlers.lsp
get-walls handlers.lsp
get-ww handlers.lsp
get-x-maxmin ac-shell.lsp
get-x-maxmin* ac-shell.lsp
get-y-maxmin ac-shell.lsp
get-y-maxmin® ac-shell.lsp

H  hierarchic-stringify ac-shell.lsp
hierarchic-stringify* ac-shell.lsp
hierarchic-stringify-children ac-shell.lsp

I id globals.lsp
in-all-3-regions ac-expl.lsp
in-bottom-third ac-expl.lsp
init-log-file ac-init.lsp
in-middle-third ac-expl.lsp
input-pline handlers.lsp
in-top-third ac-expl.lsp
is-clockwise handlers.lsp
is-clockwise* handlers.lsp

J

K

L lower-left-of-exp-box ac-expl.Isp

M

make-clockwise
make-message-window-blue
make-rc-start-right
map-shadow-point
map-shadow-points

mk_list

move-object
move-object-callback
my-textbox

handlers.lsp
ac-expl.lsp
handlers.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
acad.mnl
ac-shell.lsp
ac-expl.lsp




USACERL TR 97/37

123

N

new-object
new-object-callback
ninth

normalize-rc

object-list-click-callback
object-name-p

offset
offset-layers-bounds
on-state-string
open-roof-layout

perform-critique-actions
perform-review-actions
perform-task-activations
perform-task-activations-aux
physical-violations-list-click-callback
pin-mouse-point

position

position-aux
preference-violations-list-click-callback
process-explanation-list

resize-object
resize-object-callback

S::STARTUP
save-globals
save-roof-layout
second

seventh
shift-coordinates
show-constraints
show-critique
show-text

sixth

acad.mnl
ac-shell.lsp
ac-shell.lsp

handlers.lsp

ac-shell.lsp
ac-expl.Isp

handlers.lsp

ac-shell.lsp
ac-shell.lsp
ac-shell.lsp

ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp

handlers.lsp

ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-expl.lsp

acad.mnl
ac-shell.lsp

setup.lsp

ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-expl.lsp
ac-shell.lsp




124

USACERL TR 97/37

N~ S

slots-list-click-callback
specification-violations-list-click-callback
stringify

stringify-elements

stringify-elements

stringify-pairs

stringify-pairs

str-to-sym

subactions-depend-on-object
suggestions-callback

tasks-callback
tasks-list-click-callback
thaw-critique-layers
thaw-layers
thaw-layers*

third
toggle-debiaser-mode
toggle-influencer-mode
trim-leading-whitespace
turn-task-off
turn-task-on
turn-value

update-current-slot
upto

view-violation-callback
violation-message
violations-callback
violation-types

wrap-rc-coords

slots.lsp
ac-shell.lsp
ac-shell.lsp
attribs.lsp
slots.lsp
attribs.lsp
slots.1sp
ac-expl.lsp
ac-shell.lsp
ac-shell.lsp

ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp

-ac-shell.lsp

ac-expl.lsp
ac-shell.lsp
ac-shell.lsp

handlers.lsp

slots.lsp
ac-shell.lsp

ac-shell.lsp
ac-shell.lsp
ac-shell.lsp
ac-shell.lsp

handlers.lsp




USACERL TR 97/37

125

This publication was reproduced on recycled paper.

USACERL DISTRIBUTION

Chief of Engineers
ATTN: CEHEC-IM-LH (2)
ATTN: CEHEC-IM-LP (2)
ATTN: CECC-R
ATTN: CEMP-C
ATTN: CEMP-CE (2)
ATTN: CEMP-E
ATTN: CEMP-ES (2)
ATTN: CERD-L

US Army Engr District
ATTN: Library (40)
ATTN: Civil Engineers (40)

US Army Engr Division
ATTN: Library (11)
ATTN: Civil Engineers (11)
ATTN: Civil Construction/Civil Con-Ops (11)

Defense Tech Info Center 22060-6218
ATTN: DTIC-O (2)

127
7/96



